Splitting of Operations, Manin Products, and Rota-Baxter Operators

被引:126
作者
Bai, Chengming [1 ,2 ]
Bellier, Olivia [3 ]
Guo, Li [4 ]
Ni, Xiang [5 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Nice, Lab JA Dieudonne, F-06108 Nice 02, France
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[5] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
ALGEBRAS; RENORMALIZATION; DUALITY;
D O I
10.1093/imrn/rnr266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a general operadic definition for the notion of splitting the operations of algebraic structures. This construction is proved to be equivalent to some Manin products of operads in the case of quadratic operads and it is shown to be closely related to Rota-Baxter operators. Hence, it gives a new effective way to compute Manin black products. Finally, this allows us to describe the algebraic structure of square matrices with coefficients in algebras of certain types. Many examples illustrate this text, including an example of nonquadratic algebras with Jordan algebras.
引用
收藏
页码:485 / 524
页数:40
相关论文
共 40 条
[1]   Quadri-algebras [J].
Aguiar, M ;
Loday, JL .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 191 (03) :205-221
[2]   Pre-Poisson algebras [J].
Aguiar, M .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :263-277
[3]  
AGUIAR M, 2004, LECT NOTES PURE APPL, V237
[4]   A unified algebraic approach to the classical Yang-Baxter equation [J].
Bai, Chengming .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (36) :11073-11082
[5]   Some results on L-dendriform algebras [J].
Bai, Chengming ;
Liu, Ligong ;
Ni, Xiang .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) :940-950
[6]   Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras [J].
Bai, Chengming ;
Guo, Li ;
Ni, Xiang .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) :553-596
[7]  
Baxter G., 1960, PAC J MATH, V10, P731
[8]   The non-symmetric operad pre-Lie is free [J].
Bergeron, Nantel ;
Livernet, Muriel .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (07) :1165-1172
[9]   Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) :249-273
[10]   GROBNER BASES FOR OPERADS [J].
Dotsenko, Vladimir ;
Khoroshkin, Anton .
DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) :363-396