Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization

被引:3
|
作者
Yin, Xun-Fu [1 ]
Hao, Zhi-Feng [2 ]
机构
[1] S China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510640, Peoples R China
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
基金
中国国家自然科学基金;
关键词
fast kernel density estimation; sparse Bayesian learning; mean integrated squared error; III-posed problem; regularization; jittering; relevance vector;
D O I
10.1109/ICMLC.2008.4620689
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a novel method of obtaining very sparse representation of Kernel Distribution Function Estimation (KDFE) and Kernel Density Estimation (KDE) exploiting Sparse Bayesian Regression (SBR) technique with the aidance of regularization by jittering. SBR introduces a parameterized sparsity-inducing prior on the unknown parameters of the linear model. After reviewing the existent methodologies of fast kernel density estimation, we adapt SBR to the problem of construction of sparse KDFE and KDE. Numerical results of preliminary simulation studies on synthetic data demonstrate the effectiveness of our algorithm which can achieve sparser representation of KDE than SVM-based algorithm and can produce more precise estimate than traditional full-sample KDE algorithm.
引用
收藏
页码:1756 / +
页数:2
相关论文
共 50 条
  • [41] Fuzzy Correspondences and Kernel Density Estimation for Contaminated Point Set Registration
    Wang, Gang
    Wang, Zhicheng
    Chen, Yufei
    Zhao, Weidong
    Liu, Xianhui
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1936 - 1941
  • [42] Cross-validation bandwidth matrices for multivariate kernel density estimation
    Duong, T
    Hazelton, ML
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) : 485 - 506
  • [43] Fast and adaptive sparse precision matrix estimation in high dimensions
    Liu, Weidong
    Luo, Xi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 : 153 - 162
  • [44] SAVE - SPACE ALTERNATING VARIATIONAL ESTIMATION FOR SPARSE BAYESIAN LEARNING
    Thomas, Christo Kurisummoottil
    Slock, Dirk
    2018 IEEE DATA SCIENCE WORKSHOP (DSW), 2018, : 11 - 15
  • [45] Sparse Bayesian Learning for Blind Multichannel Estimation in Shallow Water
    Feng, Wei
    Li, Jianlong
    CONFERENCE PROCEEDINGS OF 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2019), 2019,
  • [46] CoFAR Clutter Channel Estimation via Sparse Bayesian Learning
    Rajput, Kunwar Pritiraj
    Shankar, M. R. Bhavani
    Mishra, Kumar Vijay
    Rangaswamy, Muralidhar
    Ottersten, Bjorn
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [47] Off-Grid Error Calibration for DOA Estimation Based on Sparse Bayesian Learning
    Fu, Haosheng
    Dai, Fengzhou
    Hong, Ling
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16293 - 16307
  • [48] A Robust Sparse Bayesian Learning-Based DOA Estimation Method With Phase Calibration
    Chen, Zhimin
    Ma, Wanxing
    Chen, Peng
    Cao, Zhenxin
    IEEE ACCESS, 2020, 8 : 141511 - 141522
  • [49] Direction of Arrival Estimation for Off-Grid Signals Based on Sparse Bayesian Learning
    Wu, Xiaohuan
    Zhu, Wei-Ping
    Yan, Jun
    IEEE SENSORS JOURNAL, 2016, 16 (07) : 2004 - 2016
  • [50] DOD and DOA estimation for MIMO radar based on combined MUSIC and sparse Bayesian learning
    Li, Jianfeng
    He, Yi
    He, Lang
    Zhang, Xiaofei
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,