Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization

被引:3
|
作者
Yin, Xun-Fu [1 ]
Hao, Zhi-Feng [2 ]
机构
[1] S China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510640, Peoples R China
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
基金
中国国家自然科学基金;
关键词
fast kernel density estimation; sparse Bayesian learning; mean integrated squared error; III-posed problem; regularization; jittering; relevance vector;
D O I
10.1109/ICMLC.2008.4620689
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a novel method of obtaining very sparse representation of Kernel Distribution Function Estimation (KDFE) and Kernel Density Estimation (KDE) exploiting Sparse Bayesian Regression (SBR) technique with the aidance of regularization by jittering. SBR introduces a parameterized sparsity-inducing prior on the unknown parameters of the linear model. After reviewing the existent methodologies of fast kernel density estimation, we adapt SBR to the problem of construction of sparse KDFE and KDE. Numerical results of preliminary simulation studies on synthetic data demonstrate the effectiveness of our algorithm which can achieve sparser representation of KDE than SVM-based algorithm and can produce more precise estimate than traditional full-sample KDE algorithm.
引用
收藏
页码:1756 / +
页数:2
相关论文
共 50 条
  • [21] ON OPTIMAL DATA-BASED BANDWIDTH SELECTION IN KERNEL DENSITY-ESTIMATION
    HALL, P
    SHEATHER, SJ
    JONES, MC
    MARRON, JS
    BIOMETRIKA, 1991, 78 (02) : 263 - 269
  • [22] Regularized Pre-image Estimation for Kernel PCA De-noising Input Space Regularization and Sparse Reconstruction
    Abrahamsen, Trine Julie
    Hansen, Lars Kai
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03): : 403 - 412
  • [23] Underwater Acoustic Channel Estimation Based on Sparse Bayesian Learning Algorithm
    Jia, Shuyang
    Zou, Sichen
    Zhang, Xiaochuan
    Da, Lianglong
    IEEE ACCESS, 2023, 11 : 7829 - 7836
  • [24] DOA Estimation Method for Vector Hydrophones Based on Sparse Bayesian Learning
    Wang, Hongyan
    Bai, Yanping
    Ren, Jing
    Wang, Peng
    Xu, Ting
    Zhang, Wendong
    Zhang, Guojun
    SENSORS, 2024, 24 (19)
  • [25] Fast Heterogeneous Clutter Suppression Method Based on Improved Sparse Bayesian Learning
    Wang, Qiang
    Zhang, Yani
    Li, Zhihui
    Zhao, Weihu
    ELECTRONICS, 2023, 12 (02)
  • [26] Consensus Based Distributed Sparse Bayesian Learning by Fast Marginal Likelihood Maximization
    Manss, Christoph
    Shutin, Dmitriy
    Leus, Geert
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 2119 - 2123
  • [27] On the existence and limit behavior of the optimal bandwidth for kernel density estimation
    Chacon, J. E.
    Montanero, J.
    Nogales, A. G.
    Perez, P.
    STATISTICA SINICA, 2007, 17 (01) : 289 - 300
  • [28] Probability Density Estimation Using Two New Kernel Functions
    Rodchuen, Manachai
    Suwattee, Prachoom
    CHIANG MAI JOURNAL OF SCIENCE, 2011, 38 (01): : 1 - 12
  • [29] Sparse kernel logistic regression based on L1/2 regularization
    Xu Chen
    Peng ZhiMing
    Jing WenFeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (04) : 1 - 16
  • [30] Sparse kernel logistic regression based on L1/2 regularization
    XU Chen
    PENG ZhiMing
    JING WenFeng
    Science China(Information Sciences), 2013, 56 (04) : 75 - 90