Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization

被引:3
|
作者
Yin, Xun-Fu [1 ]
Hao, Zhi-Feng [2 ]
机构
[1] S China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510640, Peoples R China
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
基金
中国国家自然科学基金;
关键词
fast kernel density estimation; sparse Bayesian learning; mean integrated squared error; III-posed problem; regularization; jittering; relevance vector;
D O I
10.1109/ICMLC.2008.4620689
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a novel method of obtaining very sparse representation of Kernel Distribution Function Estimation (KDFE) and Kernel Density Estimation (KDE) exploiting Sparse Bayesian Regression (SBR) technique with the aidance of regularization by jittering. SBR introduces a parameterized sparsity-inducing prior on the unknown parameters of the linear model. After reviewing the existent methodologies of fast kernel density estimation, we adapt SBR to the problem of construction of sparse KDFE and KDE. Numerical results of preliminary simulation studies on synthetic data demonstrate the effectiveness of our algorithm which can achieve sparser representation of KDE than SVM-based algorithm and can produce more precise estimate than traditional full-sample KDE algorithm.
引用
收藏
页码:1756 / +
页数:2
相关论文
共 50 条
  • [1] Fast learning rate of non-sparse multiple kernel learning and optimal regularization strategies
    Suzuki, Taiji
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2141 - 2192
  • [2] Kernel estimation of multivariate cumulative distribution function
    Liu, Rong
    Yang, Lijian
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (08) : 661 - 677
  • [3] The influence function of the optimal bandwidth for kernel density estimation
    Pak, Ro Jin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) : 602 - 608
  • [4] Sparse Bayesian Modeling With Adaptive Kernel Learning
    Tzikas, Dimitris G.
    Likas, Aristidis C.
    Galatsanos, Nikolaos P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06): : 926 - 937
  • [5] Gaussian Kernel Width Optimization for Sparse Bayesian Learning
    Mohsenzadeh, Yalda
    Sheikhzadeh, Hamid
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (04) : 709 - 719
  • [6] Sparse kernel learning with LASSO and Bayesian inference algorithm
    Gao, Junbin
    Kwan, Paul W.
    Shi, Daming
    NEURAL NETWORKS, 2010, 23 (02) : 257 - 264
  • [7] Fast kernel sparse representation based classification for Undersampling problem in face recognition
    Fan, Zizhu
    Wei, Chao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (11-12) : 7319 - 7337
  • [8] Symbol Rate Estimation Based on Sparse Bayesian Learning
    Jin Yan
    Tian Tian
    Ji Hongbing
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (07) : 1598 - 1603
  • [9] Varying kernel density estimation on R+
    Mnatsakanov, Robert
    Sarkisian, Khachatur
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1337 - 1345
  • [10] Multivariate locally adaptive kernel density estimation
    Gao, Jia-Xing
    Jiang, Da-Quan
    Qian, Min-Ping
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4431 - 4444