Contractive metrics for scalar conservation laws

被引:22
作者
Bolley, F
Brenier, Y
Loeper, G
机构
[1] Ecole Normale Super Lyon, F-69364 Lyon 07, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 6621, Lab JA Dieudonne, F-06108 Nice, France
[3] Ecole Polytech Fed Lausanne, CH-10015 Lausanne, Switzerland
[4] Univ Toronto, Toronto, ON, Canada
关键词
conservation laws; entropy solutions; Wasserstein distance;
D O I
10.1142/S0219891605000397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-decreasing entropy solutions to 1-d scalar conservation laws and show that the spatial derivatives of such solutions satisfy a contraction property with respect to the Wasserstein distance of any order. This result extends the L-1-contraction property shown by Kruzkov.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 6 条
[1]  
[Anonymous], 1999, SYSTEMS CONSERVATION
[3]   Sticky particles and scalar conservation laws [J].
Brenier, Y ;
Grenier, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2317-2328
[4]  
Hormander L., 1997, Mathematiques & Applications (Berlin) [Mathematics & Applications], V26, P290
[5]  
KRUZHKOV SN, 1969, DOKL AKAD NAUK SSSR+, V187, P29
[6]  
Villani C., 2003, TOPICS OPTIMAL TRANS