NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM

被引:10
作者
Shi, Shaoyun [1 ,2 ]
Li, Wenlei [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
关键词
Non-integrability; Yang-Mills system; Morales-Ramis theory; Lame equation; higher order variational equations; INTEGRABILITY;
D O I
10.3934/dcds.2013.33.1645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized Yang-Mills system with Hamiltonian H = 1/2(y(1)(2) + y(2)(2)) + 1/2(ax(1)(2) + bx(2)(2)) + 1/4cx(1)(4) + 1/4dx(2)(4) + 1/2ex(1)(2)x(2)(2) is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) e = 0, or (B) c = d = e, or (C) a = b, e = 3 c = 3 d, or (D) b = 4a, e = 3c, d = 8c, or (E) b = 4a, e = 6c, d = 16c, or (F) b = 4a, e = 3d, c = 8d, or (G) b = 4a,e = 6d,c = 16d. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
引用
收藏
页码:1645 / 1655
页数:11
相关论文
共 50 条
  • [41] Non-integrability of some hamiltonians with rational potentials
    Acosta-Humanez, Primitivo
    Blazquez-Sanz, David
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 265 - 293
  • [42] On the non-integrability and dynamics of discrete models of threads
    Kozlov, Valery
    Polekhin, Ivan
    NONLINEARITY, 2021, 34 (09) : 6398 - 6416
  • [43] Non-integrability in AdS3 vacua
    Rigatos, Konstantinos S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [44] Dynamics of multibody chains in circular orbit: non-integrability of equations of motion
    Maciejewski, Andrzej J.
    Przybylska, Maria
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 126 (04) : 297 - 311
  • [45] Non-integrability of the spacial n-center problem
    Shibayama, Mitsuru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (06) : 2461 - 2469
  • [46] Dynamics of multibody chains in circular orbit: non-integrability of equations of motion
    Andrzej J. Maciejewski
    Maria Przybylska
    Celestial Mechanics and Dynamical Astronomy, 2016, 126 : 297 - 311
  • [47] Periodic orbits and non-integrability in a cosmological scalar field
    Llibre, Jaume
    Vidal, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
  • [48] Non-integrability of the planar elliptic restricted three-body problem
    Przybylska, Maria
    Maciejewski, Andrzej J. J.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02)
  • [49] Demonstration and Application Study on Non-integrability of Painleve Equations
    Lou, Xijuan
    Chen, Haijun
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 2058 - 2065
  • [50] Non-integrability of the minimum-time Kepler problem
    Orieux, M.
    Caillau, J-B
    Combot, T.
    Fejoz, J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 452 - 459