NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM

被引:10
|
作者
Shi, Shaoyun [1 ,2 ]
Li, Wenlei [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
关键词
Non-integrability; Yang-Mills system; Morales-Ramis theory; Lame equation; higher order variational equations; INTEGRABILITY;
D O I
10.3934/dcds.2013.33.1645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized Yang-Mills system with Hamiltonian H = 1/2(y(1)(2) + y(2)(2)) + 1/2(ax(1)(2) + bx(2)(2)) + 1/4cx(1)(4) + 1/4dx(2)(4) + 1/2ex(1)(2)x(2)(2) is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) e = 0, or (B) c = d = e, or (C) a = b, e = 3 c = 3 d, or (D) b = 4a, e = 3c, d = 8c, or (E) b = 4a, e = 6c, d = 16c, or (F) b = 4a, e = 3d, c = 8d, or (G) b = 4a,e = 6d,c = 16d. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
引用
收藏
页码:1645 / 1655
页数:11
相关论文
共 50 条
  • [21] Non-integrability of restricted double pendula
    Stachowiak, Tomasz
    Szuminski, Wojciech
    PHYSICS LETTERS A, 2015, 379 (47-48) : 3017 - 3024
  • [22] Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom
    Ognyan Christov
    Celestial Mechanics and Dynamical Astronomy, 2012, 112 : 149 - 167
  • [23] Non-integrability of the dumbbell and point mass problem
    Maciejewski, Andrzej J.
    Przybylska, Maria
    Simpson, Leon
    Szuminski, Wojciech
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 117 (03): : 315 - 330
  • [24] Non-integrability by discrete quadratures
    Casale, Guy
    Roques, Julien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 87 - 112
  • [25] Non-integrability of the dumbbell and point mass problem
    Andrzej J. Maciejewski
    Maria Przybylska
    Leon Simpson
    Wojciech Szumiński
    Celestial Mechanics and Dynamical Astronomy, 2013, 117 : 315 - 330
  • [26] Non-integrability of Gross-Neveu systems
    Maciejewski, AJ
    Przybylska, M
    Stachowiak, T
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (3-4) : 249 - 267
  • [27] Non-integrability of a system describing the stationary solutions in Bose-Fermi mixtures
    Georgiev, G.
    Christov, O.
    39TH INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE13), 2013, 1570 : 305 - 312
  • [28] FORM FACTORS IN THE N=4 MAXIMALLY SUPERSYMMETRIC YANG-MILLS THEORY, SOFT THEOREMS, AND INTEGRABILITY
    Bork, L. V.
    Onishchenko, A. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (03) : 335 - 344
  • [29] Non-integrability of the restricted three-body problem
    Yagasaki, Kazuyuki
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (10) : 3012 - 3040
  • [30] Non-integrability in non-relativistic theories
    Giataganas, Dimitrios
    Sfetsos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):