NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM

被引:10
作者
Shi, Shaoyun [1 ,2 ]
Li, Wenlei [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
关键词
Non-integrability; Yang-Mills system; Morales-Ramis theory; Lame equation; higher order variational equations; INTEGRABILITY;
D O I
10.3934/dcds.2013.33.1645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized Yang-Mills system with Hamiltonian H = 1/2(y(1)(2) + y(2)(2)) + 1/2(ax(1)(2) + bx(2)(2)) + 1/4cx(1)(4) + 1/4dx(2)(4) + 1/2ex(1)(2)x(2)(2) is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) e = 0, or (B) c = d = e, or (C) a = b, e = 3 c = 3 d, or (D) b = 4a, e = 3c, d = 8c, or (E) b = 4a, e = 6c, d = 16c, or (F) b = 4a, e = 3d, c = 8d, or (G) b = 4a,e = 6d,c = 16d. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
引用
收藏
页码:1645 / 1655
页数:11
相关论文
共 35 条
[1]  
[Anonymous], NONLINEAR STUD
[2]  
[Anonymous], 1974, Sov. Phys. JETP
[3]  
[Anonymous], GRUNDLEHREN MATH WIS
[4]  
BAIDER A, 1996, FIELDS I COMMUN, V7, P5
[5]   ON ALGEBRAIC-SOLUTIONS OF LAMES DIFFERENTIAL-EQUATION [J].
BALDASSARRI, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 41 (01) :44-58
[6]   SINGULAR POINT ANALYSIS AND INTEGRALS OF MOTION FOR COUPLED NONLINEAR SCHRODINGER-EQUATIONS [J].
BAUMANN, G ;
GLOCKLE, WG ;
NONNENMACHER, TF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1891) :263-278
[7]   About the non-integrability in the Friedmann-Robertson-Walker cosmological model [J].
Boucher, Delphine ;
Weil, Jacques-Arthur .
BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (2A) :398-405
[8]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[9]   GROUP-THEORETIC OBSTRUCTIONS TO INTEGRABILITY [J].
CHURCHILL, RC ;
ROD, DL ;
SINGER, MF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :15-48
[10]  
Cohelo L. A. A., 2005, BRAZILIAN J PHYS, V35