Finding Maximum Edge Bicliques in Convex Bipartite Graphs

被引:6
作者
Nussbaum, Doron [1 ]
Pu, Shuye [2 ]
Sack, Joerg-Ruediger [1 ]
Uno, Takeaki [3 ]
Zarrabi-Zadeh, Hamid [1 ,4 ]
机构
[1] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[2] Hosp Sick Children, Program Mol Struct & Funct, Toronto, ON M5G 1X8, Canada
[3] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
基金
加拿大自然科学与工程研究理事会;
关键词
Bicliques; Convex bipartite graphs; Biconvex graphs; Bipartite permutation graphs; ALGORITHMS; RECOGNITION; GENERATION; MATCHINGS;
D O I
10.1007/s00453-010-9486-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A bipartite graph G=(A,B,E) is convex on B if there exists an ordering of the vertices of B such that for any vertex vaA, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. Motivated by an application to analyzing DNA microarray data, we study the problem of finding maximum edge bicliques in convex bipartite graphs. Given a bipartite graph G=(A,B,E) which is convex on B, we present a new algorithm that computes a maximum edge biclique of G in O(nlog (3) nlog log n) time and O(n) space, where n=|A|. This improves the current O(n (2)) time bound available for the problem. We also show that for two special subclasses of convex bipartite graphs, namely for biconvex graphs and bipartite permutation graphs, a maximum edge biclique can be computed in O(n alpha(n)) and O(n) time, respectively, where n=min (|A|,|B|) and alpha(n) is the slowly growing inverse of the Ackermann function.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 32 条
[1]   GEOMETRIC APPLICATIONS OF A MATRIX-SEARCHING ALGORITHM [J].
AGGARWAL, A ;
KLAWE, MM ;
MORAN, S ;
SHOR, P ;
WILBER, R .
ALGORITHMICA, 1987, 2 (02) :195-208
[2]   Consensus algorithms for the generation of all maximal bicliques [J].
Alexe, G ;
Alexe, S ;
Crama, Y ;
Foldes, S ;
Hammer, PL ;
Simeone, B .
DISCRETE APPLIED MATHEMATICS, 2004, 145 (01) :11-21
[3]  
[Anonymous], 1979, Computers and Intractibility: A Guide to the Theory of NP-Completeness
[4]   Discovering local structure in gene expression data: The order-preserving submatrix problem [J].
Ben-Dor, A ;
Chor, B ;
Karp, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) :373-384
[5]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[6]  
Brandstdt A., 1999, Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications
[7]  
Brodal GS, 2007, LECT NOTES COMPUT SC, V4708, P406
[8]  
Cheng Y, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P93
[9]   Finding the largest area axis-parallel rectangle in a polygon [J].
Daniels, K ;
Milenkovic, V ;
Roth, D .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (1-2) :125-148
[10]   On bipartite and multipartite clique problems [J].
Dawande, M ;
Keskinocak, P ;
Swaminathan, JM ;
Tayur, S .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 41 (02) :388-403