Orbitally stable standing-wave solutions to a coupled non-linear Klein-Gordon equation

被引:0
|
作者
Garrisi, Daniele [1 ]
机构
[1] Inha Univ, Dept Math Educ, Inchon 402751, South Korea
来源
NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS | 2015年 / 64卷
关键词
Orbital stability; standing-waves; Lyapunov function; non-linear Klein-Gordon; CONCENTRATION-COMPACTNESS PRINCIPLE; SOLITARY WAVES; STABILITY THEORY; EXISTENCE; CALCULUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We outline some results on the existence of standing-wave solutions to a coupled non-linear Klein-Gordon equation. Standing-waves are obtained as minimizers of the energy under a two-charges constraint. The ground state is stable. The standing-waves are stable provided a non-degeneracy condition is satisfied.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 50 条
  • [11] Cauchy problem for the nonlinear Klein-Gordon equation coupled with the Maxwell equation
    Colin, Mathieu
    Watanabe, Tatsuya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 778 - 796
  • [12] Orbital stability of periodic standing waves for the logarithmic Klein-Gordon equation
    Natali, Fabio
    Cardoso, Eleomar, Jr.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (02)
  • [13] Instability of standing wave for the Klein-Gordon-Hartree equation
    Li, Xiao Guang
    Zhang, Jian
    Wu, Yong Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (05) : 861 - 871
  • [14] LOCAL SMOOTH SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    Cazenave, Thierry
    Naumkin, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (05): : 1649 - 1672
  • [15] Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system
    Ohta, Masahito
    Todorova, Grozdena
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1912 - 1931
  • [16] On the Solitary Solutions for the Nonlinear Klein-Gordon Equation Coupled with Born-Infeld Theory
    Guo, Z.
    Zhang, X.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (03): : 145 - 156
  • [17] Infinitely Many Solutions for the Klein-Gordon Equation with Sublinear Nonlinearity Coupled with Born-Infeld Theory
    Che, Guofeng
    Chen, Haibo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 1083 - 1100
  • [18] Periodic Solutions to Klein-Gordon Systems with Linear Couplings
    Chen, Jianyi
    Zhang, Zhitao
    Chang, Guijuan
    Zhao, Jing
    ADVANCED NONLINEAR STUDIES, 2021, 21 (03) : 633 - 660
  • [19] Instability of Standing Wave for the Klein–Gordon–Hartree Equation
    Xiao Guang LI
    Jian ZHANG
    Yong Hong WU
    Acta Mathematica Sinica(English Series), 2014, 30 (05) : 861 - 871
  • [20] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Zhang, Jian
    Gan, Zai-hui
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03): : 427 - 442