SIGMA-CONVERGENCE OF STATIONARY NAVIER-STOKES TYPE EQUATIONS

被引:0
|
作者
Nguetseng, Gabriel [1 ]
Signing, Lazarus [2 ]
机构
[1] Univ Yaounde I, Dept Math, Yaounde, Cameroon
[2] Univ Ngaoundere, Dept Math & Comp Sci, Ngaoundere, Cameroon
关键词
Homogenization; sigma-convergence; Navier-Stokes equations; HOMOGENIZATION STRUCTURES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of homogenization theory, the Sigma-convergence method is carried out on stationary Navier-Stokes type equations on a fixed domain. Our main tools are the two-scale convergence concept and the so-called homogenization algebras.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] CONVERGENCE OF THE MAC SCHEME FOR THE COMPRESSIBLE STATIONARY NAVIER-STOKES EQUATIONS
    Gallouet, T.
    Herbin, R.
    Latche, J. -C.
    Maltese, D.
    MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1127 - 1163
  • [2] Liouville type theorem for stationary Navier-Stokes equations
    Seregin, G.
    NONLINEARITY, 2016, 29 (08) : 2191 - 2195
  • [3] Sigma-convergence of semilinear stochastic wave equations
    Deugoue, Gabriel
    Woukeng, Jean Louis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (01):
  • [4] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [5] Periodic reiterated homogenization of stationary Navier-Stokes type equations
    Signing, Lazarus
    AFRIKA MATEMATIKA, 2020, 31 (5-6) : 929 - 947
  • [6] A Liouville-type theorem for the stationary Navier-Stokes equations
    Cho, Youseung
    Choi, Jongkeun
    Yang, Minsuk
    APPLIED MATHEMATICS LETTERS, 2023, 143
  • [7] Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations
    Li, Jian
    Shen, Lihua
    Chen, Zhangxin
    BIT NUMERICAL MATHEMATICS, 2010, 50 (04) : 823 - 842
  • [8] Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations
    Jian Li
    Lihua Shen
    Zhangxin Chen
    BIT Numerical Mathematics, 2010, 50 : 823 - 842
  • [9] WEIGHTED ESTIMATES FOR STATIONARY NAVIER-STOKES EQUATIONS
    FREHSE, J
    RUZICKA, M
    ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) : 53 - 66
  • [10] On the stationary Navier-Stokes equations in exterior domains
    Kim, Hyunseok
    Kozono, Hideo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 486 - 495