Production of Graphite Chloride and Bromide Using Microwave Sparks

被引:120
作者
Zheng, Jian [1 ]
Liu, Hong-Tao [1 ]
Wu, Bin [1 ]
Di, Chong-An [1 ]
Guo, Yun-Long [1 ]
Wu, Ti [1 ]
Yu, Gui [1 ]
Liu, Yun-Qi [1 ]
Zhu, Dao-Ben [1 ]
机构
[1] Chinese Acad Sci, Key Lab Organ Solids, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
PATTERNED GRAPHENE; OXIDE-FILMS; CARBON; FUNCTIONALIZATION; CHLORINATION; ELECTRODES; CHEMISTRY; SHEETS;
D O I
10.1038/srep00662
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemically modified graphite is an economical material with promising applications in its own right or as an intermediate in the synthesis of graphene. However, because of its extreme chemical inertness, to date only two methods-oxidation and fluorination-have been found which can modify graphite with high yield and large throughput. Herein, we describe a third chemical approach for the synthesis of large quantities of highly modified graphite which uses a microwave-sparks-assisted halogenation reaction. The resulting graphite halide can easily be exfoliated into monolayer graphene in organic solvents. The structure and electronic properties of the original graphene can be recovered after thermal annealing of the graphene halide. Furthermore, the graphene halide can be further modified by a variety of organic functional groups. Solution-processed field-effect transistors based on the graphene halides resulted in device performances were comparable to, or even better than, that of graphene oxide.
引用
收藏
页数:6
相关论文
共 46 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]   MICROWAVE-INDUCED PLASMA SHIELD PROPAGATION IN RARE GASES [J].
BETHKE, GW ;
RUESS, AD .
PHYSICS OF FLUIDS, 1969, 12 (04) :822-&
[4]  
Brodie B.C., 1860, ANN CHIM PHYS, V59, P466
[5]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[6]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[7]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[8]   Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J].
Di, Chong-an ;
Wei, Dacheng ;
Yu, Gui ;
Liu, Yunqi ;
Guo, Yunlong ;
Zhu, Daoben .
ADVANCED MATERIALS, 2008, 20 (17) :3289-+
[9]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240