Hot Deformation Behavior and Processing Maps of a 9Ni590B Steel

被引:5
作者
Li, Rongbin [1 ,2 ,3 ]
Chen, Yongqiang [1 ,2 ,3 ]
Jiang, Chunxia [1 ,3 ]
Zhang, Rulin [1 ,3 ]
Fu, Yanpeng [1 ,2 ,3 ]
Huang, Tian [1 ,2 ,3 ]
Chen, Tongtong [1 ,2 ,3 ]
机构
[1] Shanghai Dianji Univ, Acad Mat, Shanghai 201306, Peoples R China
[2] Univ Shanghai Sci & Technol, Acad Mat Sci & Engn, Shanghai 200093, Peoples R China
[3] Shanghai Dianji Univ, Shanghai Engn Res Ctr Large Piece Hot Mfg, Shanghai 201306, Peoples R China
关键词
9Ni590B steel; constitutive equation; dynamic recrystallization (DRX); hot compression; microstructure; DYNAMIC RECRYSTALLIZATION; CONSTITUTIVE ANALYSIS; ALLOY; NI; WORKABILITY; MICROSTRUCTURE; OPTIMIZATION; TEMPERATURE; SUPERALLOY; KINETICS;
D O I
10.1007/s11665-020-04907-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To increase the hot workability and provide proper hot forming parameters of a 9Ni590B steel for the simulation and production, the hot deformation behavior of the 9Ni590B steel is investigated through isothermal compression tests using a Gleeble-3180 thermal-mechanical simulator over a temperature range of 850-1200 degrees C with strain rates of 0.001-5 s(-1). The results indicate that as the deformation temperature increases and the strain rate decreases, the flow stress of the 9Ni590B steel decreases. The deformation-activation energy was calculated to be 364.99 kJ/mol based on the flow stress curve data. The dynamic material model (DMM) was used to establish the process map of the thermal deformation for the 9Ni590B steel. The results show that the optimal deformation conditions for the 9Ni590B steel hot working are with a temperature range of 1100-1200 degrees C and a strain rate range of 0.001-0.01 s(-1). The validity of the calculations was confirmed by observing the microstructure of the 9Ni590B steel sample under the optimal thermal process parameters.
引用
收藏
页码:3858 / 3867
页数:10
相关论文
共 51 条
[1]   Hot deformation and processing maps of extruded ZE41A magnesium alloy [J].
Anbuselvan, S. ;
Ramanathan, S. .
MATERIALS & DESIGN, 2010, 31 (05) :2319-2323
[2]   Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel [J].
Babu, K. Arun ;
Mandal, S. ;
Athreya, C. N. ;
Shakthipriya, B. ;
Sarma, V. Subramanya .
MATERIALS & DESIGN, 2017, 115 :262-275
[3]   Hot deformation behavior of Ni-Fe-Ga-based ferromagnetic shape memory alloy - A study using processing map [J].
Biswas, Aniruddha ;
Singh, Gaurav ;
Sarkar, Sudip Kumar ;
Krishnan, Madangopal ;
Ramamurty, Upadrasta .
INTERMETALLICS, 2014, 54 :69-78
[4]  
Chen SP., 2009, CHEM EQUIP TECHNOL, V30, P40
[5]   Hot deformation behavior and workability characteristic of a fine-grained Mg-8Sn-2Zn-2Al alloy with processing map [J].
Cheng, Weili ;
Bai, Yang ;
Ma, Shichao ;
Wang, Lifei ;
Wang, Hongxia ;
Yu, Hui .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (06) :1198-1209
[6]   Hot deformation behavior and dynamic recrystallization of a β-solidifying TiAl alloy [J].
Cui, Ning ;
Kong, Fantao ;
Wang, Xiaopeng ;
Chen, Yuyong ;
Zhou, Haitao .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 652 :231-238
[7]   Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite [J].
Deng, Kun-kun ;
Li, Jian-chao ;
Xu, Fang-jun ;
Nie, Kai-bo ;
Liang, Wei .
MATERIALS & DESIGN, 2015, 67 :72-81
[8]   Effect of Ti addition on microstructure evolution and precipitation in Cu-Co-Si alloy during hot deformation [J].
Geng, Yongfeng ;
Li, Xu ;
Zhou, Honglei ;
Zhang, Yi ;
Jia, Yanlin ;
Tian, Baohong ;
Liu, Yong ;
Volinsky, Alex A. ;
Zhang, Xiaohui ;
Song, Kexing ;
Wang, Guangxin ;
Li, Lihua ;
Hou, Jinrui .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 821
[9]  
Guo K, 2010, J LIAONING SHIHUA U, V30, P26
[10]   Dissolution mechanisms and kinetics of δ phase in an aged Ni-based superalloy in hot deformation process [J].
He, Dao-Guang ;
Lin, Y. C. ;
Jiang, Xing-You ;
Yin, Liang-Xing ;
Wang, Li-Hua ;
Wu, Qiao .
MATERIALS & DESIGN, 2018, 156 :262-271