Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production

被引:16
作者
Wu, Yingji [1 ]
Ge, Shengbo [1 ]
Xia, Changlei [1 ,2 ]
Cai, Liping [1 ]
Mei, Changtong [1 ]
Sonne, Christian [3 ]
Park, Young-Kwon [4 ]
Kim, Young-Min [5 ]
Chen, Wei-Hsin [6 ,7 ,8 ]
Chang, Jo-Shu [7 ,9 ]
Lam, Su Shiung [2 ,10 ,11 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Coinnovat Ctr Efficient Proc & Utilizat Forestry, Nanjing 210037, Jiangsu, Peoples R China
[2] Anhui Juke Graphene Technol Co Ltd, Bozhou 233600, Anhui, Peoples R China
[3] Aarhus Univ, Arctic Res Ctr ARC, Dept Biosci, Frederiksborgvej 399,POB 358, DK-4000 Roskilde, Denmark
[4] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
[5] Daegu Univ, Dept Environm Engn, Gyongsan 38453, South Korea
[6] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 701, Taiwan
[7] Tunghai Univ, Coll Engn, Dept Chem & Mat Engn, Taichung 407, Taiwan
[8] Natl Chin Yi Univ Technol, Dept Mech Engn, Taichung 411, Taiwan
[9] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
[10] Univ Malaysia Terengganu, Inst Trop Aquaculture & Fisheries AKUATROP, Pyrolysis Technol Res Grp, Kuala Nerus 21030, Malaysia
[11] Henan Agr Univ, Henan Prov Engn Res Ctr Biomass Value Added Prod, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Separate hydrolysis-fermentation (SHF); Biomass; Carbon dioxide (CO2); Yeast fermentation; Biofuel; ENZYMATIC-HYDROLYSIS; SEPARATE HYDROLYSIS; ETHANOL-PRODUCTION; LIGNOCELLULOSIC BIOMASS; PRETREATMENT; CELLULOSE; FERMENTATION; BIOFUELS; WATER; WOOD;
D O I
10.1016/j.biortech.2020.123675
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g(-1) glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation [J].
Abedinifar, Sorahi ;
Karimi, Keikhosro ;
Khanahmadi, Morteza ;
Taherzadeh, Mohammad J. .
BIOMASS & BIOENERGY, 2009, 33 (05) :828-833
[2]   Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose [J].
Bansal, Prabuddha ;
Vowell, Bryan J. ;
Hall, Melanie ;
Realff, Matthew J. ;
Lee, Jay H. ;
Bommarius, Andreas S. .
BIORESOURCE TECHNOLOGY, 2012, 107 :243-250
[3]   Bio-oils from biomass slow pyrolysis: A chemical and toxicological screening [J].
Cordella, Mauro ;
Torri, Cristian ;
Adamiano, Alessio ;
Fabbri, Daniele ;
Barontini, Federica ;
Cozzani, Valerio .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 231 :26-35
[4]   Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol [J].
Ewanick, Shannon M. ;
Bura, Renata ;
Saddler, John N. .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 98 (04) :737-746
[5]   Lignin-Containing Cellulose Nanomaterials: A Promising New Nanomaterial for Numerous Applications [J].
Ewulonu C.M. ;
Liu X. ;
Wu M. ;
Yong H. .
Journal of Bioresources and Bioproducts, 2019, 4 (01) :3-10
[6]   Hydrothermal processing of lignocellulosic materials [J].
Garrote, G ;
Domínguez, H ;
Parajó, JC .
HOLZ ALS ROH-UND WERKSTOFF, 1999, 57 (03) :191-202
[7]   High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose [J].
Ge, Shengbo ;
Wu, Yingji ;
Peng, Wanxi ;
Xia, Changlei ;
Mei, Changtong ;
Cai, Liping ;
Shi, Sheldon Q. ;
Sonne, Christian ;
Lam, Su Shiung ;
Tsang, Yiu Fai .
CHEMICAL ENGINEERING JOURNAL, 2020, 385
[8]   Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming [J].
Hamidinejad, Mandi ;
Zhao, Biao ;
Zandieh, Azadeh ;
Moghimian, Nima ;
Filleter, Tobin ;
Park, Chul B. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) :30752-30761
[9]   Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina [J].
Jagtap, Sujit Sadashiv ;
Dhiman, Saurabh Sudha ;
Kim, Tae-Su ;
Li, Jinglin ;
Lee, Jung-Kul ;
Kang, Yun Chan .
BIORESOURCE TECHNOLOGY, 2013, 133 :307-314
[10]   Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass [J].
Jensen, Jill R. ;
Morinelly, Juan E. ;
Gossen, Kelsey R. ;
Brodeur-Campbell, Michael J. ;
Shonnard, David R. .
BIORESOURCE TECHNOLOGY, 2010, 101 (07) :2317-2325