Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution

被引:2
作者
Ling, Zhi-Bin [1 ,2 ]
Liu, Gui-Ju [1 ,2 ]
Yang, Cheng-Peng [1 ,2 ]
Liang, Wen-Shuang [1 ,2 ]
Wang, Yi-Qian [1 ,2 ]
机构
[1] Qingdao Univ, Coll Phys, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Univ, State Key Lab, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
La0.67Ca0.33MnO3; films; electron holography; magnetic properties; interfacial electrical potential; charge distribution; BARRIER;
D O I
10.1088/1674-1056/28/4/046101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interfacial electrical potentials and charge distributions of two manganite-based heterojunctions, i.e., La0.67Ca0.33MnO3/SrTiO3:0.05 wt% Nb (LCMO/STON) and La0.67Ca0.33MnO3/LaMnO3/SrTiO3:0.05 wt% Nb (simplified as LCMO/LMO/STON), are studied by means of off-axis electron holography in a transmission electron microscope. The influences of buffer layer on the microstructure and magnetic properties of the LCMO films are explored. The results show that when a buffer layer of LaMnO3 is introduced, the tensile strain between the STON substrate and LCMO film reduces, misfit dislocation density decreases near the interfaces of the heterojunctions, and a positive magnetoresistance is observed. For the LCMO/STON junction, positive and negative charges accumulate near the interface between the substrate and the film. For the LCMO/LMO/STON junction, a complex charge distribution takes place across the interface, where notable negative charges accumulate. The difference between the charge distributions near the interface may shed light on the observed generation of positive magnetoresistance in the junction with a buffer layer.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Off-axis electron holography of manganite-based heterojunctions:Interface potential and charge distribution [J].
令志斌 ;
刘桂菊 ;
杨成鹏 ;
梁文双 ;
王乙潜 .
Chinese Physics B, 2019, 28 (04) :273-278
[2]   Local charge measurement using off-axis electron holography [J].
Beleggia, M. ;
Gontard, L. C. ;
Dunin-Borkowski, R. E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (29)
[3]   Direct Mapping of Charge Distribution during Lithiation of Ge Nanowires Using Off-Axis Electron Holography [J].
Gan, Zhaofeng ;
Gu, Meng ;
Tang, Jianshi ;
Wang, Chiu-Yen ;
He, Yang ;
Wang, Kang L. ;
Wang, Chongmin ;
Smith, David J. ;
McCartney, Martha R. .
NANO LETTERS, 2016, 16 (06) :3748-3753
[4]   An introduction to off-axis electron holography [J].
Midgley, PA .
MICRON, 2001, 32 (02) :167-184
[5]   Noise estimation for off-axis electron holography [J].
Roeder, Falk ;
Lubk, Axel ;
Wolf, Daniel ;
Niermann, Tore .
ULTRAMICROSCOPY, 2014, 144 :32-42
[6]   Off-axis and inline electron holography: Experimental comparison [J].
Latychevskaia, Tatiana ;
Formanek, Petr ;
Koch, C. T. ;
Lubk, Axel .
ULTRAMICROSCOPY, 2010, 110 (05) :472-482
[7]   Off-axis electron holography without Fresnel fringes [J].
Yamamoto, K ;
Hirayama, T ;
Tanji, T .
ULTRAMICROSCOPY, 2004, 101 (2-4) :265-269
[8]   Determination of localized visibility in off-axis electron holography [J].
McLeod, Robert A. ;
Kupsta, Martin ;
Malac, Marek .
ULTRAMICROSCOPY, 2014, 138 :4-12
[9]   Optimization of off-axis electron holography performed with femtosecond electron pulses [J].
Houdellier, F. ;
Caruso, G. M. ;
Weber, S. ;
Hytch, M. J. ;
Gatel, C. ;
Arbouet, A. .
ULTRAMICROSCOPY, 2019, 202 :26-32
[10]   Performance of a direct detection camera for off-axis electron holography [J].
Chang, Shery L. Y. ;
Dwyer, Christian ;
Barthel, Juri ;
Boothroyd, Chris B. ;
Dunin-Borkowski, Rafal E. .
ULTRAMICROSCOPY, 2016, 161 :90-97