3D simulations of the impact of two-phase flow on PEM fuel cell performance

被引:45
作者
Ding, Yulong [1 ,2 ]
Bi, Xiaotao [1 ,2 ]
Wilkinson, David P. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[2] Clean Energy Res Ctr, Vancouver, BC V6T 1Z3, Canada
关键词
PEM fuel cell; Multiphase flow; Electrochemistry; Fluid mechanics; Mathematical modeling; VOF method; 3-DIMENSIONAL NUMERICAL-SIMULATION; LIQUID WATER TRANSPORT; PARALLEL-CHANNELS; PRESSURE-DROP; CATHODE; VISUALIZATION; MANAGEMENT; BEHAVIOR; MODEL; MICROCHANNEL;
D O I
10.1016/j.ces.2012.11.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Water management is a major issue in the operation of PEM fuel cells. Two-phase flow has been commonly observed in PEM fuel cell channels from experiments. One of the two-phase flow patterns, the slug flow, has great negative impacts on the fuel cell performance. In this work, the impact of two-phase flow patterns, especially the slug flow, on the fuel cell performance was simulated using a 3D volume fluid model (VOF) coupling with a 1D membrane electrode assembly (MEA) model. The proposed model is capable of describing the two-phase flow patterns, especially the slug flow in the cathode side gas flow channels. The comparison of fuel cell performance between single phase flow and two-phase flow shows that the presence of slug flow decreases the cell voltage output in the mass transport region, but has little effect in the kinetic and ohmic region. However, the slug flow causes great increase of overall pressure drop, which should be avoided during the PEM fuel cell operation. Effects of gas stoichiometric flow ratios on the fuel cell performance were then simulated. Increasing the gas flow rate significantly broadens the ohmic region, enabling the fuel cell to be operated at higher current densities. However, given a fixed current density during fuel cell operation, too high a gas flow rate will result in high pressure drops with little improvement in the fuel cell performance. Changing channel wall or MEA surface wettability also has great impact on the PEM fuel cell performance and two-phase flow pattern in the channel. Using a more hydrophobic MEA surface is helpful to extend the ohmic region and increase PEM fuel cell performance. Using too hydrophilic or too hydrophobic channel wall is not recommended, since either reduces the cell output voltage. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 35 条
[1]   A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells [J].
Anderson, Ryan ;
Zhang, Lifeng ;
Ding, Yulong ;
Blanco, Mauricio ;
Bi, Xiaotao ;
Wilkinson, David P. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4531-4553
[2]   Two-phase flow pressure drop hysteresis in parallel channels of a proton exchange membrane fuel cell [J].
Anderson, Ryan ;
Wilkinson, David P. ;
Bi, Xiaotao ;
Zhang, Lifeng .
JOURNAL OF POWER SOURCES, 2010, 195 (13) :4168-4176
[3]   Liquid water visualization in PEM fuel cells: A review [J].
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :3845-3857
[4]   Dynamic water transport and droplet emergence in PEMFC gas diffusion layers [J].
Bazylak, Aimy ;
Sinton, David ;
Djilali, Ned .
JOURNAL OF POWER SOURCES, 2008, 176 (01) :240-246
[5]   Water management in PEM fuel cells [J].
Berg, P ;
Promislow, K ;
St Pierre, J ;
Stumper, J ;
Wetton, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) :A341-A353
[6]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[7]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[8]   Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell [J].
Cai, Y. H. ;
Hu, J. ;
Ma, H. P. ;
Yi, B. L. ;
Zhang, H. M. .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :843-848
[9]   Semi-analytical proton exchange membrane fuel cell modeling [J].
Cheddie, Denver F. ;
Munroe, Norman D. H. .
JOURNAL OF POWER SOURCES, 2008, 183 (01) :164-173
[10]   Three dimensional numerical simulation of gas-liquid two-phase flow patterns in a polymer-electrolyte membrane fuel cells gas flow channel [J].
Ding, Y. ;
Bi, H. T. ;
Wilkinson, D. P. .
JOURNAL OF POWER SOURCES, 2011, 196 (15) :6284-6292