Stellar mass spectrum within massive collapsing clumps II. Thermodynamics and tidal forces of the first Larson core. A robust mechanism for the peak of the IMF

被引:51
作者
Lee, Yueh-Ning [1 ,2 ,3 ]
Hennebelle, Patrick [1 ,2 ,4 ]
机构
[1] Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France
[2] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, AIM,CEA, F-91191 Gif Sur Yvette, France
[3] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Inst Phys Globe Paris,UMR 7154, F-75005 Paris, France
[4] Ecole Normale Super, CNRS, UMR 8112, LERMA, F-75231 Paris, France
来源
ASTRONOMY & ASTROPHYSICS | 2018年 / 611卷
基金
欧洲研究理事会;
关键词
ISM: clouds; ISM: structure; turbulence; stars: formation; ADAPTIVE MESH REFINEMENT; STAR-FORMATION; INITIAL CONDITIONS; SINK PARTICLES; JEANS MASS; FRAGMENTATION; ORIGIN; CLOUD; SIMULATIONS; DEPENDENCE;
D O I
10.1051/0004-6361/201731523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Understanding the origin of the initial mass function (IMF) of stars is a major problem for the star formation process and beyond. Aims. We investigate the dependence of the peak of the IMF on the physics of the so-called first Larson core, which corresponds to the point where the dust becomes opaque to its own radiation. Methods. We performed numerical simulations of collapsing clouds of 1000 M-circle dot for various gas equations of state (eos), paying great attention to the numerical resolution and convergence. The initial conditions of these numerical experiments are varied in the companion paper. We also develop analytical models that we compare to our numerical results. Results. When an isothermal eos is used, we show that the peak of the IMF shifts to lower masses with improved numerical resolution. When an adiabatic eos is employed, numerical convergence is obtained. The peak position varies with the eos, and using an analytical model to infer the mass of the first Larson core, we find that the peak position is about ten times its value. By analyzing the stability of nonlinear density fluctuations in the vicinity of a point mass and then summing over a reasonable density distribution, we find that tidal forces exert a strong stabilizing effect and likely lead to a preferential mass several times higher than that of the first Larson core. Conclusions. We propose that in a sufficiently massive and cold cloud, the peak of the IMF is determined by the thermodynamics of the high-density adiabatic gas as well as the stabilizing influence of tidal forces. The resulting characteristic mass is about ten times the mass of the first Larson core, which altogether leads to a few tenths of solar masses. Since these processes are not related to the large-scale physical conditions and to the environment, our results suggest a possible explanation for the apparent universality of the peak of the IMF.
引用
收藏
页数:17
相关论文
共 63 条
  • [1] The mass function of dense molecular cores and the origin of the IMF
    Alves, J.
    Lombardi, M.
    Lada, C. J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2007, 462 (01) : L17 - L21
  • [2] From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey
    Andre, Ph.
    Men'shchikov, A.
    Bontemps, S.
    Koenyves, V.
    Motte, F.
    Schneider, N.
    Didelon, P.
    Minier, V.
    Saraceno, P.
    Ward-Thompson, D.
    Di Francesco, J.
    White, G.
    Molinari, S.
    Testi, L.
    Abergel, A.
    Griffin, M.
    Henning, Th.
    Royer, P.
    Merin, B.
    Vavrek, R.
    Attard, M.
    Arzoumanian, D.
    Wilson, C. D.
    Ade, P.
    Aussel, H.
    Baluteau, J. -P.
    Benedettini, M.
    Bernard, J. -Ph.
    Blommaert, J. A. D. L.
    Cambresy, L.
    Cox, P.
    Di Giorgio, A.
    Hargrave, P.
    Hennemann, M.
    Huang, M.
    Kirk, J.
    Krause, O.
    Launhardt, R.
    Leeks, S.
    Le Pennec, J.
    Li, J. Z.
    Martin, P. G.
    Maury, A.
    Olofsson, G.
    Omont, A.
    Peretto, N.
    Pezzuto, S.
    Prusti, T.
    Roussel, H.
    Russeil, D.
    [J]. ASTRONOMY & ASTROPHYSICS, 2010, 518
  • [3] Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function
    Ballesteros-Paredes, Javier
    Hartmann, Lee W.
    Perez-Goytia, Nadia
    Kuznetsova, Aleksandra
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (01) : 566 - 574
  • [4] BALLESTEROSPAREDES, 2009, MNRAS, V395, pL81, DOI DOI 10.1111/J.1745-3933.2009.00647.X
  • [5] A Universal Stellar Initial Mass Function? A Critical Look at Variations
    Bastian, Nate
    Covey, Kevin R.
    Meyer, Michael R.
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 48, 2010, 48 : 339 - 389
  • [6] The importance of radiative feedback for the stellar initial mass function
    Bate, Matthew R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 392 (04) : 1363 - 1380
  • [7] Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation
    Bate, Matthew R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 392 (02) : 590 - 616
  • [8] The dependence of the initial mass function on metallicity and the opacity limit for fragmentation
    Bate, MR
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 363 (02) : 363 - 378
  • [9] The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds
    Bate, MR
    Bonnell, IA
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (04) : 1201 - 1221
  • [10] The formation of a star cluster: predicting the properties of stars and brown dwarfs
    Bate, MR
    Bonnell, IA
    Bromm, V
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 339 (03) : 577 - 599