Higher rank homogeneous Clifford structures

被引:11
作者
Moroianu, Andrei [1 ]
Pilca, Mihaela [2 ,3 ]
机构
[1] Univ Versailles St Quentin, Math Lab, F-78035 Versailles, France
[2] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[3] Acad Romana, Inst Math Simion Stoilow, Bucharest 010702, Romania
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2013年 / 87卷
关键词
MANIFOLDS;
D O I
10.1112/jlms/jds061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an upper bound for the rank r of homogeneous (even) Clifford structures on compact manifolds of non-vanishing Euler characteristic. More precisely, we show that if r=2(a)center dot b with b odd, then r < 9 for a=0, r < 10 for a=1, r < 12 for a=2 and r < 16 for a >= 3. Moreover, we describe the four limiting cases and show that there is exactly one solution in each case.
引用
收藏
页码:384 / 400
页数:17
相关论文
共 8 条