Chebyshev cardinal functions: An effective tool for solving nonlinear Volterra and Fredholm integro-differential equations of fractional order

被引:0
|
作者
Irandoust-pakchin, S. [1 ]
Kheiri, H. [1 ]
Abdi-mazraeh, S. [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Dept Appl Math, Tabriz, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2013年 / 37卷 / A1期
关键词
Fractional; Volterra; Fredholm; operational matrix; collocation method of fractional derivative; Caputo derivative; Chebyshev cardinal function; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; DIFFUSION;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A computational method for numerical solution of a nonlinear Volterra and Fredholm integro-differential equations of fractional order based on Chebyshev cardinal functions is introduced. The Chebyshev cardinal operational matrix of fractional derivative is derived and used to transform the main equation to a system of algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条