Primary production within the sea-ice zone west of the Antarctic Peninsula: I-Sea ice, summer mixed layer, and irradiance

被引:201
作者
Vernet, Maria [1 ]
Martinson, Douglas [2 ]
Iannuzzi, Richard [2 ]
Stammerjohn, Sharon [3 ]
Kozlowski, Wendy [1 ]
Sines, Karie [1 ]
Smith, Ray [4 ]
Garibotti, Irene [5 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, Integrat Oceanog Div, La Jolla, CA 92093 USA
[2] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[3] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA
[4] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[5] Inst Argentino Nivol Glaciol & Ciencias Ambiental, RA-5500 Mendoza, Argentina
基金
美国国家科学基金会;
关键词
Primary production; Sea ice; Mixed layer depth; Polar waters; Phytoplankton;
D O I
10.1016/j.dsr2.2008.05.021
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
in shelf waters of the western Antarctic Peninsula (wAP), with abundant macro- and micronutrients, water-column stability has been suggested as the main factor controlling primary production; freshwater input from sea-ice melting stabilizes the upper water column by forming a shallow summer mixed layer. Retreating sea ice in the spring and summer thus defines the area of influence, the sea-ice zone (SIZ) and the marginal ice zone (MIZ). A 12-year time series (1995-2006) was analyzed to address two main questions: (1) what are the spatial and temporal patterns in primary production; and (2) to what extent and in what ways is primary production related to sea-ice dynamics. Data were collected on cruises performed during January of each year, at the height of the growth season, within the region bounded by 64 degrees S and 64 degrees W to the north and 68 degrees S and 66 degrees W to the south. Average daily integrated primary production varied by an order of magnitude, from similar to 250 to similar to 1100mg cm(-2) d(-1), with an average cruise primary production of 745 mg C m(-2) d(-1). A strong onshore-offshore gradient was evident along the shelf with higher production observed inshore. Inter-annual regional production varied by a factor of 7: maximum rates were measured in 2006 (1788 mg cm(-2) d-(1)) and minimum in 1999 (248 Mg C m(-2) d(-1)). The results support the hypothesis that primary production in the wAP shelf is related to sea-ice dynamics. To first order, shallower summer mixed-layer depths in the shelf correlated with late sea retreat and primary production. Principal component analysis showed that high primary production in January was associated with enhanced shelf production toward the coast and in the south, explaining 63% of the variability in space and time. This first mode captured the inter-annual variability in regional production. Temporal variability in primary production (time series of anomalies defined for each location) showed spatial dependence: higher primary production correlated with shallow mixed-layer depths only at mid-shelf; in coastal and offshore waters, primary production correlated with deeper mixed layers. Thus, coastal primary production can show a non-linear relationship with summer mixed layers. Under conditions of large biomass (> 20 mg ch1 a m(-3)) and shallow mixed-layer depth (e.g., 5 m) phytoplankton production becomes light limited. This limitation is reduced with a deepening of the summer mixed layer (e.g., 20m). Dominance of diatoms and the ability to adapt and photosynthesize at higher light levels characterized the large phytoplankton blooms. No significant regional trend in primary production was detected within the 12-year series. We conclude that the regional average primary production on the wAP shelf is associated with shallow summer mixed layers in conjunction with late sea-ice retreat. An opposite relationship is observed for the highest production rates in coastal waters, associated with large biomass, where a deepening of the summer mixed layer relieves light limitation. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2068 / 2085
页数:18
相关论文
共 73 条
[1]   PHYSICAL CONTROLS ON THE DEVELOPMENT AND CHARACTERISTICS OF ANTARCTIC SEA-ICE BIOLOGICAL COMMUNITIES - A REVIEW AND SYNTHESIS [J].
ACKLEY, SF ;
SULLIVAN, CW .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1994, 41 (10) :1583-1604
[3]  
Aitchison J., 1957, The lognormal distribution with special reference to its uses in economics
[4]   Primary production in Southern Ocean waters [J].
Arrigo, KR ;
Worthen, D ;
Schnell, A ;
Lizotte, MP .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C8) :15587-15600
[5]   Biospheric primary production during an ENSO transition [J].
Behrenfeld, MJ ;
Randerson, JT ;
McClain, CR ;
Feldman, GC ;
Los, SO ;
Tucker, CJ ;
Falkowski, PG ;
Field, CB ;
Frouin, R ;
Esaias, WE ;
Kolber, DD ;
Pollack, NH .
SCIENCE, 2001, 291 (5513) :2594-2597
[6]   WATER COLUMN AND SEA-ICE PRIMARY PRODUCTION DURING AUSTRAL SPRING IN THE BELLINGSHAUSEN SEA [J].
BOYD, PW ;
ROBINSON, C ;
SAVIDGE, G ;
WILLIAMS, PJL .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1995, 42 (4-5) :1177-1200
[7]   A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization [J].
Boyd, PW ;
Watson, AJ ;
Law, CS ;
Abraham, ER ;
Trull, T ;
Murdoch, R ;
Bakker, DCE ;
Bowie, AR ;
Buesseler, KO ;
Chang, H ;
Charette, M ;
Croot, P ;
Downing, K ;
Frew, R ;
Gall, M ;
Hadfield, M ;
Hall, J ;
Harvey, M ;
Jameson, G ;
LaRoche, J ;
Liddicoat, M ;
Ling, R ;
Maldonado, MT ;
McKay, RM ;
Nodder, S ;
Pickmere, S ;
Pridmore, R ;
Rintoul, S ;
Safi, K ;
Sutton, P ;
Strzepek, R ;
Tanneberger, K ;
Turner, S ;
Waite, A ;
Zeldis, J .
NATURE, 2000, 407 (6805) :695-702
[8]   Primary production, physiological state and composition of phytoplankton in the Atlantic Sector of the Southern Ocean [J].
Bracher, AU ;
Kroon, BMA ;
Lucas, MI .
MARINE ECOLOGY PROGRESS SERIES, 1999, 190 :1-16
[9]   MICROZOOPLANKTON AND THEIR ROLE IN CONTROLLING PHYTOPLANKTON GROWTH IN THE MARGINAL ICE-ZONE OF THE BELLINGSHAUSEN SEA [J].
BURKILL, PH ;
EDWARDS, ES ;
SLEIGH, MA .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1995, 42 (4-5) :1277-1290
[10]   Dissolved inorganic carbon pool dynamics in northern Gerlache Strait, Antarctica [J].
Carrillo, CJ ;
Karl, DM .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C7) :15873-15884