Antimicrobial treatment of heat sensitive products by atmospheric pressure plasma sources

被引:0
作者
Brandenburg, R. [1 ]
Krohmann, U. [1 ]
Stieber, M. [1 ]
Weltmann, K. -D. [1 ]
Woedtke, T. V. [1 ]
Ehlbeck, J. [1 ]
机构
[1] INP Greifswald, Leibniz Inst Plasma Sci & Technol, Inst Low Temp Plasma Phys, D-17489 Greifswald, Germany
来源
PLASMA ASSISTED DECONTAMINATION OF BIOLOGICAL AND CHEMICAL AGENTS | 2008年
关键词
plasma jet; microwave plasma; sterilization; decontamination; non-thermal plasma;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The technological potential of non-thermal plasmas for the antimicrobial treatment of heat sensitive materials is well known. Despite a multitude of scientific activities with considerable progress within the last years the realization of industrial plasma-based decontamination or sterilization technology remains a great challenge. The aim of the work presented in this contribution is to demonstrate the applicability of plasma-based processes for the antimicrobial treatment on selected, heat sensitive products. The idea is to use modular and selective plasma sources. These plasma sources are driven at atmospheric pressure due to its technological advantages (avoidance of vacuum devices and batch processing). According to the specific requirements given by the product different plasma sources, namely rf-driven plasma jets, microwave-driven air plasmas are used.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 50 条
  • [21] New Nonthermal Atmospheric-Pressure Plasma Sources for Decontamination of Human Extremities
    Weltmann, Klaus-Dieter
    Fricke, Katja
    Stieber, Manfred
    Brandenburg, Ronny
    von Woedtke, Thomas
    Schnabel, Uta
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (11) : 2963 - 2969
  • [22] Characterization and comparative evaluation of two atmospheric plasma sources for water treatment
    Bosi, Franco J.
    Tampieri, Francesco
    Marotta, Ester
    Bertani, Roberta
    Pavarin, Daniele
    Paradisi, Cristina
    PLASMA PROCESSES AND POLYMERS, 2018, 15 (03)
  • [23] Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality
    Rod, Sara Katrine
    Hansen, Flemming
    Leipold, Frank
    Knochel, Susanne
    FOOD MICROBIOLOGY, 2012, 30 (01) : 233 - 238
  • [24] Characterization of a novel microwave plasma sheet source operated at atmospheric pressure
    Nowakowska, Helena
    Czylkowski, Dariusz
    Hrycak, Bartosz
    Jasinski, Mariusz
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (08)
  • [25] In-package atmospheric pressure cold plasma treatment of strawberries
    Misra, N. N.
    Patil, Sonal
    Moiseev, Tamara
    Bourke, Paula
    Mosnier, J. P.
    Keener, K. M.
    Cullen, P. J.
    JOURNAL OF FOOD ENGINEERING, 2014, 125 : 131 - 138
  • [26] Atmospheric Pressure Plasma for Diesel Particulate Matter Treatment: A Review
    Guo, Xiurong
    Ha, Khanh Hop
    Du, Danfeng
    CATALYSTS, 2021, 11 (01) : 1 - 25
  • [27] Air DCSBD plasma treatment of Al surface at atmospheric pressure
    Prysiazhnyi, V.
    Vasina, P.
    Panyala, N. R.
    Havel, J.
    Cernak, M.
    SURFACE & COATINGS TECHNOLOGY, 2012, 206 (11-12) : 3011 - 3016
  • [28] Microorganism response to atmospheric pressure helium plasma DBD treatment
    Poiata, Antoniea
    Motrescu, Iuliana
    Nastuta, A.
    Creanga, D. E.
    Popa, G.
    JOURNAL OF ELECTROSTATICS, 2010, 68 (02) : 128 - 131
  • [29] A Microfluidic Atmospheric-Pressure Plasma Reactor for Water Treatment
    Patinglag, Laila
    Sawtell, David
    Iles, Alex
    Melling, Louise M.
    Shaw, Kirsty J.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2019, 39 (03) : 561 - 575
  • [30] INFLUENCE OF ATMOSPHERIC PRESSURE PLASMA TREATMENT ON EPITHELIAL REGENERATION PROCESS
    Grigoras, C.
    Topala, I.
    Nastuta, A. V.
    Jitaru, D.
    Florea, I.
    Badescu, L.
    Ungureanu, D.
    Badescu, M.
    Dumitrascu, N.
    ROMANIAN JOURNAL OF PHYSICS, 2011, 56 : 54 - 61