Adaptive False Alarm Filter Using Machine Learning in Intrusion Detection

被引:0
|
作者
Meng, Yuxin [1 ]
Kwok, Lam-for [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Intrusion detection; False alarm; Machine learning; Adaptive system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intrusion detection systems (IDSs) have been widely deployed in organizations nowadays as the last defense for the network security. However, one of the big problems of these systems is that a large amount of alarms especially false alarms will be produced during the detection process, which greatly aggravates the analysis workload and reduces the effectiveness of detection. To mitigate this problem, we advocate that the construction of a false alarm filter by utilizing machine learning schemes is an effective solution. In this paper, we propose an adaptive false alarm filter aiming to filter out false alarms with the best machine learning algorithm based on distinct network contexts. In particular, we first compare with six specific machine learning schemes to illustrate their unstable performance. Then, we demonstrate the architecture of our adaptive false alarm filter. The evaluation results show that our approach is effective and encouraging in real scenarios.
引用
收藏
页码:573 / 584
页数:12
相关论文
共 50 条
  • [21] Buried fiber intrusion detection sensor with minimal false alarm rates
    Bush, J
    Davis, C
    Davis, P
    Cekorich, A
    McNair, F
    FOURTH PACIFIC NORTHWEST FIBER OPTIC SENSOR WORKSHOP, 1998, 3489 : 30 - 40
  • [22] IoBT Intrusion Detection System using Machine Learning
    Alkanjr, Basmh
    Alshammari, Thamer
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 886 - 892
  • [23] Intrusion Detection Study and Enhancement Using Machine Learning
    Mliki, Hela
    Kaceam, Abir Hadj
    Chaari, Lamia
    RISKS AND SECURITY OF INTERNET AND SYSTEMS (CRISIS 2019), 2020, 12026 : 263 - 278
  • [24] Malicious URL and Intrusion Detection using Machine Learning
    Hamza, Amr
    Hammam, Farah
    Abouzeid, Medhat
    Ahmed, Mohammad Arsalan
    Dhou, Salam
    Aloul, Fadi
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 795 - 800
  • [25] An Intrusion Detection System for SDN Using Machine Learning
    Logeswari, G.
    Bose, S.
    Anitha, T.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (01): : 867 - 880
  • [26] An Investigation on Intrusion Detection System Using Machine Learning
    Patgiri, Ripon
    Varshney, Udit
    Akutota, Tanya
    Kunde, Rakesh
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1684 - 1691
  • [27] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 303 - 307
  • [28] Cascaded intrusion detection system using machine learning
    Ahamed, Md. Khabir Uddin
    Karim, Abdul
    SYSTEMS AND SOFT COMPUTING, 2025, 7
  • [29] Network Intrusion Detection Using Machine Learning Techniques
    Almutairi, Yasmeen
    Alhazmi, Bader
    Munshi, Amr
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2022, 16 (03) : 193 - 206
  • [30] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 438 - 442