Sensitivity Analyses for Sparse-Data Problems-Using Weakly Informative Bayesian Priors

被引:26
作者
Hamra, Ghassan B. [1 ]
MacLehose, Richard F. [2 ,3 ]
Cole, Stephen R. [1 ]
机构
[1] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC USA
[2] Univ Minnesota, Div Biostat, Minneapolis, MN USA
[3] Univ Minnesota, Div Epidemiol & Community Hlth, Minneapolis, MN USA
关键词
EXPOSURE MISCLASSIFICATION; RIDGE-REGRESSION; RELATIVE RISKS; ALCOHOL; KNOWLEDGE; SELECTION; TOBACCO; CANCER; MOUTH;
D O I
10.1097/EDE.0b013e318280db1d
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist. (Epidemiology 2013;24: 233-239)
引用
收藏
页码:233 / 239
页数:7
相关论文
共 39 条
[1]  
Arminger G., 1995, HDB STAT MODELING SO, DOI New York
[2]  
BRESLOW N, 1981, BIOMETRIKA, V68, P73, DOI 10.1093/biomet/68.1.73
[3]  
Breslow N E, 1980, IARC Sci Publ, P5
[4]  
Carlin BP, 2009, CH CRC TEXT STAT SCI, V78, P1
[5]   Sensitivity analysis of misclassification: A graphical and a Bayesian approach [J].
Chu, Haitao ;
Wang, Zhaojie ;
Cole, Stephen R. ;
Greenland, Sander .
ANNALS OF EPIDEMIOLOGY, 2006, 16 (11) :834-841
[6]   Bayesian adjustment for exposure misclassification in case-control studies [J].
Chu, Rong ;
Gustafson, Paul ;
Le, Nhu .
STATISTICS IN MEDICINE, 2010, 29 (09) :994-1003
[7]   Bayesian Posterior Distributions Without Markov Chains [J].
Cole, Stephen R. ;
Chu, Haitao ;
Greenland, Sander ;
Hamra, Ghassan ;
Richardson, David B. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (05) :368-375
[8]   Commentary: Practical advantages of Bayesian analysis of epidemiologic data [J].
Dunson, DB .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2001, 153 (12) :1222-1226
[9]   A WEAKLY INFORMATIVE DEFAULT PRIOR DISTRIBUTION FOR LOGISTIC AND OTHER REGRESSION MODELS [J].
Gelman, Andrew ;
Jakulin, Aleks ;
Pittau, Maria Grazia ;
Su, Yu-Sung .
ANNALS OF APPLIED STATISTICS, 2008, 2 (04) :1360-1383
[10]   Toward evidence-based medical statistics.: 1:: The P value fallacy [J].
Goodman, SN .
ANNALS OF INTERNAL MEDICINE, 1999, 130 (12) :995-1004