Harmonic maps from super Riemann surfaces

被引:0
|
作者
Ostermayr, Dominik [1 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50937 Cologne, Germany
关键词
Harmonic maps; Super Riemann surfaces; Finite type; Completely integrable systems; CLASSICAL-SOLUTIONS; TORI; CONSTRUCTION; GEOMETRY; 2-SPHERES; SPACES;
D O I
10.1016/j.geomphys.2017.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study harmonic maps from super Riemann surfaces in complex projective spaces and projective spaces associated with the super skew-field D. In both cases, we develop the theory of Gauss transforms and study the notion of isotropy, in particular its relation to holomorphic differentials on the super Riemann surface. Moreover, we give a definition of finite type harmonic maps for a special class of maps into CPn vertical bar n+1 and thus obtain a classification for certain harmonic super tori. Furthermore, we investigate the equations satisfied by the underlying objects and give an example of a harmonic super torus in DP2 whose underlying map is not harmonic. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:371 / 412
页数:42
相关论文
共 50 条
  • [1] Harmonic maps from degenerating Riemann surfaces
    Miaomiao Zhu
    Mathematische Zeitschrift, 2010, 264 : 63 - 85
  • [2] Harmonic maps from degenerating Riemann surfaces
    Zhu, Miaomiao
    MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (01) : 63 - 85
  • [3] Harmonic maps from Riemann surfaces into complex Finsler manifolds
    Nishikawa, Seiki
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (06)
  • [4] Harmonic maps between annuli on Riemann surfaces
    Kalaj, David
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 182 (01) : 123 - 147
  • [5] Energy of twisted harmonic maps of Riemann surfaces
    Goldman, William M.
    Wentworth, Richard A.
    IN THE TRADITION OF AHLFORS-BERS, IV, 2007, 432 : 45 - +
  • [6] Harmonic maps between annuli on Riemann surfaces
    David Kalaj
    Israel Journal of Mathematics, 2011, 182
  • [7] Proper Harmonic Maps from Hyperbolic Riemann Surfaces into the Euclidean Plane
    Antonio Alarcón
    José A. Gálvez
    Results in Mathematics, 2011, 60 : 487 - 505
  • [8] Proper Harmonic Maps from Hyperbolic Riemann Surfaces into the Euclidean Plane
    Alarcon, Antonio
    Galvez, Jose A.
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 487 - 505
  • [9] Bubbling analysis for approximate Lorentzian harmonic maps from Riemann surfaces
    Han, Xiaoli
    Jost, Juergen
    Liu, Lei
    Zhao, Liang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [10] Harmonic Maps with Free Boundary from Degenerating Bordered Riemann Surfaces
    Lei Liu
    Chong Song
    Miaomiao Zhu
    The Journal of Geometric Analysis, 2022, 32