Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells

被引:277
作者
Dravid, G
Ye, ZH
Hammond, H
Chen, GB
Pyle, A
Donovan, P
Yu, XB
Cheng, LZ
机构
[1] Johns Hopkins Univ, Sch Med, Inst Cell Engn, Stem Cell Program,Dept Gynecol & Obstet, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA
关键词
human embryonic stem cells; embryonic stem cell biology; self-renewal; stem cell differentiation; cellular proliferation; Wnt signaling; beta-catenin signaling; colony formation assays;
D O I
10.1634/stemcells.2005-0034
中图分类号
Q813 [细胞工程];
学科分类号
摘要
We used a panel of human and mouse fibroblasts with various abilities for supporting the prolonged growth of human embryonic stem cells (hESCs) to elucidate growth factors required for hESC survival, proliferation, and maintenance of the undifferentiated and pluripotent state (self-renewal). We found that supportive feeder cells secrete growth factors required for both hESC survival/proliferation and blocking hESC spontaneous differentiation to achieve self-renewal. The antidifferentiation soluble factor is neither leukemia inhibitory factor nor Wnt, based on blocking experiments using their antagonists. Because Wnt/beta-catenin signaling has been implicated in cell-fate determination and stem cell expansion, we further examined the effects of blocking or adding recombinant Wnt proteins on undifferentiated hESCs. In the absence of feeder cell-derived factors, hESCs cultured under a feeder-free condition survived/proliferated poorly and gradually differentiated. Adding recombinant Wnt3a stimulated hESC proliferation but also differentiation. After 4-5 days of Wnt3a treatment, hESCs that survived maintained the undifferentiated phenotype but few could form undifferentiated hESC colonies subsequently. Using a functional reporter assay, we found that the P-catenin-mediated transcriptional activation in the canonical Wnt pathway was minimal in undifferentiated hESCs, but greatly upregulated during differentiation induced by the Wnt treatment and several other methods. Thus, Wnt/beta-catenin activation does not suffice to maintain the undifferentiated and pluripotent state of hESCs. We propose a new model for the role of Wnt/beta-catenin signaling in undifferentiated hESCs. STEM CELLS 2005;23:1489-1501.
引用
收藏
页码:1489 / 1501
页数:13
相关论文
共 47 条
  • [1] Stem cells in the skin: waste not, Wnt not
    Alonso, L
    Fuchs, E
    [J]. GENES & DEVELOPMENT, 2003, 17 (10) : 1189 - 1200
  • [2] Human feeder layers for human embryonic stem cells
    Amit, M
    Margulets, V
    Segev, H
    Shariki, K
    Laevsky, I
    Coleman, R
    Itskovitz-Eldor, J
    [J]. BIOLOGY OF REPRODUCTION, 2003, 68 (06) : 2150 - 2156
  • [3] Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture
    Amit, M
    Carpenter, MK
    Inokuma, MS
    Chiu, CP
    Harris, CP
    Waknitz, MA
    Itskovitz-Eldor, J
    Thomson, JA
    [J]. DEVELOPMENTAL BIOLOGY, 2000, 227 (02) : 271 - 278
  • [4] Feeder layer- and serum-free culture of human embryonic stem cells
    Amit, M
    Shariki, C
    Margulets, V
    Itskovitz-Eldor, J
    [J]. BIOLOGY OF REPRODUCTION, 2004, 70 (03) : 837 - 845
  • [5] Brachyury is a target gene of the Wnt/β-catenin signaling pathway
    Arnold, SJ
    Stappert, J
    Bauer, A
    Kispert, A
    Herrmann, BG
    Kemler, R
    [J]. MECHANISMS OF DEVELOPMENT, 2000, 91 (1-2) : 249 - 258
  • [6] Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation
    Aubert, J
    Dunstan, H
    Chambers, I
    Smith, A
    [J]. NATURE BIOTECHNOLOGY, 2002, 20 (12) : 1240 - 1245
  • [7] Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers
    Beattie, GM
    Lopez, AD
    Bucay, N
    Hinton, A
    Firpo, MT
    King, CC
    Hayek, A
    [J]. STEM CELLS, 2005, 23 (04) : 489 - 495
  • [8] Nanog:: A new recruit to the embryonic stem cell orchestra
    Cavaleri, F
    Schöler, HR
    [J]. CELL, 2003, 113 (05) : 551 - 552
  • [9] Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells
    Chambers, I
    Colby, D
    Robertson, M
    Nichols, J
    Lee, S
    Tweedie, S
    Smith, A
    [J]. CELL, 2003, 113 (05) : 643 - 655
  • [10] Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture
    Cheng, LZ
    Hammond, H
    Ye, ZH
    Zhan, XC
    Dravid, G
    [J]. STEM CELLS, 2003, 21 (02) : 131 - 142