New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrodinger equation

被引:11
作者
Simos, TE [1 ]
机构
[1] TECH UNIV CRETE, DEPT SCI, LAB APPL MATH & COMP, KHANIA 73100, CRETE, GREECE
关键词
D O I
10.1088/0031-8949/55/6/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new family of P-stable two-step high-order methods with minimal phase-lag are developed for the numerical integration of the special second-order initial value problem. An application to the one-dimensional Schrodinger equation, indicates that these new methods are generally more accurate than other previously developed finite difference methods.
引用
收藏
页码:644 / 650
页数:7
相关论文
共 25 条
[1]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[2]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[3]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[4]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[5]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[7]  
Hairer E, 1987, SOLVING ORDINARY DIF, VI, DOI DOI 10.1007/978-3-662-12607-3
[8]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[9]  
Ixaru LG., 1978, TOPICS THEORETICAL P
[10]   SHOOTING METHODS FOR THE SCHRODINGER-EQUATION [J].
KILLINGBECK, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :1411-1417