InAs nanowire growth on oxide-masked ⟨111⟩ silicon

被引:56
作者
Bjoerk, Mikael T. [1 ]
Schmid, Heinz [1 ]
Breslin, Chris M. [2 ]
Gignac, Lynne [2 ]
Riel, Heike [1 ]
机构
[1] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[2] IBM Res Watson, Yorktown Hts, NY 10598 USA
关键词
Nanostructures; Metalorganic vapor phase epitaxy; Selective epitaxy; Semiconducting III-V materials; Semiconducting silicon; EPITAXIAL-GROWTH; QUANTUM DOTS;
D O I
10.1016/j.jcrysgro.2012.01.052
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Here we investigate the growth of InAs nanowires on < 111 > Si substrates masked by SiOx using metal-organic chemical vapor deposition. We study < 111 > (axial) and < 1-10 > (radial) growth of InAs NWs by varying growth duration, temperature, group-III molar flows, V/III ratio, mask material, mask opening size, and inter-wire distance. We find that growth takes place without an In droplet and the process evolves through three successive phases: nucleation of an InAs cluster, followed by two distinct nanowire growth phases. These two growth phases have different axial and radial growth rates, which originate in a transition from having In supply dominated by the open Si area in the first phase towards an In supply from the vapor/oxide mask in the second growth phase. The linear relation found between nanowire length and diameter vs. time in the last growth phase indicates that < 111 > growth is not surface diffusion limited as is usually the case for catalyzed growth. A high yield of vertical nanowires is obtained if group-III flow is above and V/III ratio below threshold values, in addition to having an arsenic-terminated Si surface. Furthermore, we observe that < 111 > and < 1-10 > growth is surface kinetically limited below 520 degrees C and 540 degrees C, respectively, with activation energies of 20 and 6.5 kcal/mol. This difference in activation energies limits the selectivity of the < 111 > to < 1-10 > growth to 25:1 under optimized conditions, which must be considered when fabricating axially modulated structures. However, we find that by placing wires in large arrays it is possible to completely stop the < 1-10 > growth rate in favor of the < 111 > growth rate. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 35 条
[1]   InGaAs nano-pillar array formation on partially masked InP(III)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application [J].
Akabori, M ;
Takeda, J ;
Motohisa, J ;
Fukui, T .
NANOTECHNOLOGY, 2003, 14 (10) :1071-1074
[2]   Trap-Assisted Tunneling in Si-InAs Nanowire Heterojunction Tunnel Diodes [J].
Bessire, Cedric D. ;
Bjoerk, Mikael T. ;
Schmid, Heinz ;
Schenk, Andreas ;
Reuter, Kathleen B. ;
Riel, Heike .
NANO LETTERS, 2011, 11 (10) :4195-4199
[3]   Si-InAs heterojunction Esaki tunnel diodes with high current densities [J].
Bjork, M. T. ;
Schmid, H. ;
Bessire, C. D. ;
Moselund, K. E. ;
Ghoneim, H. ;
Karg, S. ;
Lortscher, E. ;
Riel, H. .
APPLIED PHYSICS LETTERS, 2010, 97 (16)
[4]   One-dimensional heterostructures in semiconductor nanowhiskers [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :1058-1060
[5]   GaAs epitaxy on Si substrates: modern status of research and engineering [J].
Bolkhovityanov, Yu B. ;
Pchelyakov, O. P. .
PHYSICS-USPEKHI, 2008, 51 (05) :437-456
[6]   Controlled III/V Nanowire Growth by Selective-Area Vapor-Phase Epitaxy [J].
Cantoro, M. ;
Brammertz, G. ;
Richard, O. ;
Bender, H. ;
Clemente, F. ;
Leys, M. ;
Degroote, S. ;
Caymax, M. ;
Heyns, M. ;
De Gendt, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (11) :H860-H868
[7]  
Cirlin G. E., 2000, Materials Physics and Mechanics, V1, P15
[8]   Self-Assisted Nucleation and Vapor-Solid Growth of In As Nanowires on Bare Si(111) [J].
Dimakis, Emmanouil ;
Laehnemann, Jonas ;
Jahn, Uwe ;
Breuer, Steffen ;
Hilse, Maria ;
Geelhaar, Lutz ;
Riechert, Henning .
CRYSTAL GROWTH & DESIGN, 2011, 11 (09) :4001-4008
[9]   Vertical InAs Nanowire Wrap Gate Transistors with ft &gt; 7 GHz and fMax &gt; 20 GHz [J].
Egard, M. ;
Johansson, S. ;
Johansson, A. -C ;
Persson, K. -M. ;
Dey, A. W. ;
Borg, B. M. ;
Thelander, C. ;
Wernersson, L. -E. ;
Lind, E. .
NANO LETTERS, 2010, 10 (03) :809-812
[10]   Equilibrium limits of coherency in strained nanowire heterostructures [J].
Ertekin, E ;
Greaney, PA ;
Chrzan, DC ;
Sands, TD .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)