Two-tailed asymptotic inferences for a proportion

被引:17
作者
Martin Andres, Antonio [1 ]
Alvarez Hernandez, Maria [1 ]
机构
[1] Univ Granada, Fac Med, E-18071 Granada, Spain
关键词
crossover point and relative slope; OC function; switching procedure; two-plan variables sampling scheme; BINOMIAL CONFIDENCE-INTERVALS; INDEPENDENT PROPORTIONS; APPROXIMATE; DIFFERENCE; PARAMETER;
D O I
10.1080/02664763.2014.881783
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the scheme of the inspection plan, namely the tightened normal tightened (n(T), n(N); k) is considered and procedures and necessary tables are developed for the selection of the variables sampling scheme, indexed through crossover point (COP). The importance of COP, the properties and advantages of the operating characteristic curve with respect to COP are studied.
引用
收藏
页码:1516 / 1529
页数:14
相关论文
共 24 条
[1]   Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures [J].
Agresti, A ;
Caffo, B .
AMERICAN STATISTICIAN, 2000, 54 (04) :280-288
[2]   Dealing with discreteness: making 'exact' confidence intervals for proportions, differences of proportions, and odds ratios more exact [J].
Agresti, A .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2003, 12 (01) :3-21
[3]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[4]   CHOOSING THE OPTIMAL UNCONDITIONED TEST FOR COMPARING 2 INDEPENDENT PROPORTIONS [J].
ANDRES, AM ;
MATO, AS .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (05) :555-574
[5]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[6]  
ANSCOMBE FJ, 1956, BIOMETRIKA, V43, P461, DOI 10.1093/biomet/43.3-4.461
[7]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116
[8]   CONFIDENCE-INTERVAL ESTIMATION OF A RATE AND THE CHOICE OF SAMPLE-SIZE [J].
BOHNING, D .
STATISTICS IN MEDICINE, 1988, 7 (08) :865-875
[9]   Constructing binomial confidence intervals with near nominal coverage by adding a single imaginary failure or success [J].
Borkowf, Craig B. .
STATISTICS IN MEDICINE, 2006, 25 (21) :3679-3695
[10]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133