Probing silicon quantum dots by single-dot techniques

被引:40
作者
Sychugov, Ilya [1 ]
Valenta, Jan [2 ]
Linnros, Jan [1 ]
机构
[1] KTH Royal Inst Technol, Mat & Nano Phys Dept, SE-16440 Stockholm, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Chem Phys & Opt, Ke Karlovu 3, Prague 12116 2, Czech Republic
基金
瑞典研究理事会;
关键词
silicon nanocrystal; luminescence; porous silicon; single-dot; spectroscopy; lifetime; ligands; ROOM-TEMPERATURE; SI NANOCRYSTALS; LIGHT-EMISSION; PHOTOLUMINESCENCE SPECTROSCOPY; FLUORESCENCE SPECTROSCOPY; BLINKING STATISTICS; SPECTRAL DIFFUSION; LASER PYROLYSIS; OPTICAL GAIN; BAND-GAP;
D O I
10.1088/1361-6528/aa542b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.
引用
收藏
页数:27
相关论文
共 154 条
[1]   Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy [J].
Akcakir, O ;
Therrien, J ;
Belomoin, G ;
Barry, N ;
Muller, JD ;
Gratton, E ;
Nayfeh, M .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1857-1859
[2]  
[Anonymous], 2015, Nature, V527, P544, DOI 10.1038/nature15745
[3]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[4]   Luminescent Carbon Nanodots: Emergent Nanolights [J].
Baker, Sheila N. ;
Baker, Gary A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) :6726-6744
[5]   Quantum confinement in Si and Ge nanostructures: Theory and experiment [J].
Barbagiovanni, Eric G. ;
Lockwood, David J. ;
Simpson, Peter J. ;
Goncharova, Lyudmila V. .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[6]   Single-electron charging effect in individual Si nanocrystals [J].
Baron, T ;
Gentile, P ;
Magnea, N ;
Mur, P .
APPLIED PHYSICS LETTERS, 2001, 79 (08) :1175-1177
[7]   ELECTRON-ENERGY-LOSS SPECTROSCOPY OF SINGLE SILICON NANOCRYSTALS - THE CONDUCTION-BAND [J].
BATSON, PE ;
HEATH, JR .
PHYSICAL REVIEW LETTERS, 1993, 71 (06) :911-914
[8]   Hidden symmetries in the energy levels of excitonic 'artificial atoms' [J].
Bayer, M ;
Stern, O ;
Hawrylak, P ;
Fafard, S ;
Forchel, A .
NATURE, 2000, 405 (6789) :923-926
[9]   Multiple Exciton Generation in Semiconductor Quantum Dots [J].
Beard, Matthew C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (11) :1282-1288
[10]   Observation of a magic discrete family of ultrabright Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Smith, A ;
Rao, S ;
Twesten, R ;
Chaieb, S ;
Nayfeh, MH ;
Wagner, L ;
Mitas, L .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :841-843