Phase diagrams for Si:H film growth by plasma-enhanced chemical vapor deposition

被引:6
|
作者
Ferlauto, AS
Koval, RJ
Wronski, CR
Collins, RW [1 ]
机构
[1] Penn State Univ, Dept Phys, Mat Res Lab, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Thin Film Devices, University Pk, PA 16802 USA
关键词
D O I
10.1016/S0022-3093(01)00996-6
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phase diagrams for plasma-enhanced chemical vapor deposition (PECVD) of thin film silicon (Si:H) describe the thicknesses and deposition-parameter values at which different microstructural and phase transitions are detected during film growth, using real time spectroscopic ellipsometry (RTSE) as a probe. In such diagrams. the positions of the transitions are plotted in the plane defined by the Si:H bulk layer thickness (d(b)) and by the value of a key deposition parameter, usually the hydrogen-to-silane dilution ratio R = [H-2]/[SiH4]. In this study, phase diagrams of d(b) vs. R are presented for Si:H films prepared under different rf PECVD conditions on crystalline silicon substrates. The variable parameters explored here include the rf plasma power. substrate temperature, and total gas pressure. The presented diagrams provide insights into the film growth processes that yield optimum electronic quality amorphous and microcrystalline Si:H at elevated deposition rates (> 0.3 nm/s). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [1] Comparison of phase diagrams for vhf and rf plasma-enhanced chemical vapor deposition of Si:H films
    Ferreira, GM
    Ferlauto, AS
    Pearce, JM
    Wronski, CR
    Ross, C
    Collins, RW
    AMORPHOUS AND NANOCRYSTALLINE SILICON SCIENCE AND TECHNOLOGY- 2004, 2004, 808 : 215 - 220
  • [2] Plasma-enhanced chemical vapor deposition of amorphous Si on graphene
    Lupina, G.
    Strobel, C.
    Dabrowski, J.
    Lippert, G.
    Kitzmann, J.
    Krause, H. M.
    Wenger, Ch.
    Lukosius, M.
    Wolff, A.
    Albert, M.
    Bartha, J. W.
    APPLIED PHYSICS LETTERS, 2016, 108 (19)
  • [3] The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition
    Jung-Dae Kwon
    Electronic Materials Letters, 2013, 9 : 875 - 878
  • [4] The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition
    Kwon, Jung-Dae
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (06) : 875 - 878
  • [5] The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition
    Cervenka, J.
    Ledinsky, M.
    Stuchlik, J.
    Stuchlikova, H.
    Bakardjieva, S.
    Hruska, K.
    Fejfar, A.
    Kocka, J.
    NANOTECHNOLOGY, 2010, 21 (41)
  • [6] Si/SiGe growth by low-energy plasma-enhanced chemical vapor deposition
    Pin, G
    Kermarrec, O
    Chabanne, G
    Campidelli, Y
    Chevrier, JB
    Billon, T
    Bensahel, D
    JOURNAL OF CRYSTAL GROWTH, 2006, 286 (01) : 11 - 17
  • [7] Spatially resolved in situ diagnostics for plasma-enhanced chemical vapor deposition film growth
    McCauley, TS
    Israel, A
    Vohra, YK
    Tarvin, JT
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (04): : 1860 - 1865
  • [9] Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition
    Tokuda, Norio
    NOVEL ASPECTS OF DIAMOND: FROM GROWTH TO APPLICATIONS, 2ND EDITION, 2019, 121 : 1 - 29
  • [10] Carbon nanofiber growth in plasma-enhanced chemical vapor deposition
    Denysenko, I.
    Ostrikov, K.
    Cvelbar, U.
    Mozetic, M.
    Azarenkov, N. A.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)