High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials

被引:1514
作者
Lu, Zhiyi [1 ]
Chen, Guangxu [1 ]
Siahrostami, Samira [2 ]
Chen, Zhihua [3 ]
Liu, Kai [1 ]
Xie, Jin [1 ]
Liao, Lei [1 ]
Wu, Tong [1 ]
Lin, Dingchang [1 ]
Liu, Yayuan [1 ]
Jaramillo, Thomas F. [3 ]
Norskov, Jens K. [2 ,4 ]
Cui, Yi [1 ,5 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
[5] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA USA
关键词
NITROGEN-DOPED CARBON; H2O2; PRODUCTION; NANOTUBES; SURFACE; O-2; ELECTROLYSIS; SELECTIVITY; OXIDATION; DESIGN; WATER;
D O I
10.1038/s41929-017-0017-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen peroxide (H2O2) is a valuable chemical with a wide range of applications, but the current industrial synthesis of H2O2 involves an energy-intensive anthraquinone process. The electrochemical synthesis of H2O2 from oxygen reduction offers an alternative route for on-site applications; the efficiency of this process depends greatly on identifying cost-effective catalysts with high activity and selectivity. Here, we demonstrate a facile and general approach to catalyst development via the surface oxidation of abundant carbon materials to significantly enhance both the activity and selectivity (similar to 90%) for H2O2 production by electrochemical oxygen reduction. We find that both the activity and selectivity are positively correlated with the oxygen content of the catalysts. The density functional theory calculations demonstrate that the carbon atoms adjacent to several oxygen functional groups (-COOH and C-O-C) are the active sites for oxygen reduction reaction via the two-electron pathway, which are further supported by a series of control experiments.
引用
收藏
页码:156 / 162
页数:7
相关论文
共 42 条
[1]   Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules [J].
Adllan, Alwaleed Ahmed ;
Dal Corso, Andrea .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (42)
[2]   Multiwall carbon nanotubes: Synthesis and application [J].
Andrews, R ;
Jacques, D ;
Qian, DL ;
Rantell, T .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1008-1017
[3]   A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports [J].
Assumpcao, M. H. M. T. ;
De Souza, R. F. B. ;
Rascio, D. C. ;
Silva, J. C. M. ;
Calegaro, M. L. ;
Gaubeur, I. ;
Paixao, T. R. L. C. ;
Hammer, P. ;
Lanza, M. R. V. ;
Santos, M. C. .
CARBON, 2011, 49 (08) :2842-2851
[4]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[5]   Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene [J].
Barros, Willyam R. P. ;
Wei, Qiliang ;
Zhang, Gaixia ;
Sun, Shuhui ;
Lanza, Marcos R. V. ;
Tavares, Ana C. .
ELECTROCHIMICA ACTA, 2015, 162 :263-270
[6]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[7]   Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2 [J].
Chen, Zhihua ;
Chen, Shucheng ;
Siahrostami, Samira ;
Chakthranont, Pongkarn ;
Hahn, Christopher ;
Nordlund, Dennis ;
Dimosthenis, Sokaras ;
Norskov, Jens K. ;
Bao, Zhenan ;
Jaramillo, Thomas F. .
REACTION CHEMISTRY & ENGINEERING, 2017, 2 (02) :239-245
[8]   Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst [J].
Choi, Chang Hyuck ;
Kim, Minho ;
Kwon, Han Chang ;
Cho, Sung June ;
Yun, Seongho ;
Kim, Hee-Tak ;
Mayrhofer, Karl J. J. ;
Kim, Hyungjun ;
Choi, Minkee .
NATURE COMMUNICATIONS, 2016, 7
[9]   Hydrogen Peroxide Synthesis via Enhanced Two-Electron Oxygen Reduction Pathway on Carbon-Coated Pt Surface [J].
Choi, Chang Hyuck ;
Kwon, Han Chang ;
Yook, Sunwoo ;
Shin, Hyeyoung ;
Kim, Hyungjun ;
Choi, Minkee .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51) :30063-30070
[10]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840