Sub-additive ionic transport across arrays of solid-state nanopores

被引:69
作者
Gadaleta, A. [1 ,2 ]
Sempere, C. [1 ,2 ]
Gravelle, S. [1 ,2 ]
Siria, A. [1 ,2 ]
Fulcrand, R. [1 ,2 ]
Ybert, C. [1 ,2 ]
Bocquet, L. [1 ,2 ,3 ,4 ]
机构
[1] Univ Lyon 1, ILM, F-69622 Villeurbanne, France
[2] CNRS, UMR 5306, F-69622 Villeurbanne, France
[3] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[4] MIT, CNRS, UMI 3466, Cambridge, MA 02139 USA
关键词
NANOFLUIDIC CHANNELS; ACCESS RESISTANCE; GRAPHENE; PORE; SEDIMENTATION; MEMBRANES; GRADIENT; SIZE;
D O I
10.1063/1.4863206
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Nanopores, either biological, solid-state, or ultrathin pierced graphene, are powerful tools which are central to many applications, from sensing of biological molecules to desalination and fabrication of ion selective membranes. However, the interpretation of transport through low aspect-ratio nanopores becomes particularly complex as 3D access effects outside the pores are expected to play a dominant role. Here, we report both experiments and theory showing that, in contrast to naive expectations, long-range mutual interaction across an array of nanopores leads to a non-extensive, sub-linear scaling of the global conductance on the number of pores N. A scaling analysis demonstrates that the N-dependence of the conductance depends on the topology of the network. It scales like G similar to N/log N for a 1D line of pores, and like G similar to root N for a 2D array, in agreement with experimental measurements. Our results can be extended to alternative transport phenomena obeying Laplace equations, such as diffusive, thermal, or hydrodynamic transport. Consequences of this counter-intuitive behavior are discussed in the context of transport across thin membranes, with applications in energy harvesting. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 28 条
[1]  
Aguilella-Arzo M., 2005, EUR BIOPHYS J, V34, P314
[2]   SEDIMENTATION IN A DILUTE DISPERSION OF SPHERES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1972, 52 (MAR28) :245-+
[3]   VARIANCE IN THE SEDIMENTATION SPEED OF A SUSPENSION [J].
CAFLISCH, RE ;
LUKE, JHC .
PHYSICS OF FLUIDS, 1985, 28 (03) :759-760
[4]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[5]   Solid-state nanopores [J].
Dekker, Cees .
NATURE NANOTECHNOLOGY, 2007, 2 (04) :209-215
[6]   Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel [J].
Durand, Nicolas F. Y. ;
Renaud, Philippe .
LAB ON A CHIP, 2009, 9 (02) :319-324
[7]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73
[8]   Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source [J].
Guo, Wei ;
Cao, Liuxuan ;
Xia, Junchao ;
Nie, Fu-Qiang ;
Ma, Wen ;
Xue, Jianming ;
Song, Yanlin ;
Zhu, Daoben ;
Wang, Yugang ;
Jiang, Lei .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (08) :1339-1344
[9]   ACCESS RESISTANCE OF A SMALL CIRCULAR PORE [J].
HALL, JE .
JOURNAL OF GENERAL PHYSIOLOGY, 1975, 66 (04) :531-532
[10]   PHARMACOLOGICAL MODIFICATIONS OF SODIUM CHANNELS OF FROG NERVE [J].
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1968, 51 (02) :199-&