Innate immune recognition

被引:5948
作者
Janeway, CA
Medzhitov, R
机构
[1] Yale Univ, Sch Med, Immunobiol Sect, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06520 USA
关键词
Toll; Drosophila; pathogen; pattern recognition; receptors;
D O I
10.1146/annurev.immunol.20.083001.084359
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens.
引用
收藏
页码:197 / 216
页数:20
相关论文
共 109 条
[1]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[2]   Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system [J].
Agrawal, A ;
Eastman, QM ;
Schatz, DG .
NATURE, 1998, 394 (6695) :744-751
[3]   Topology and structure of the C1q-binding site on C-reactive protein [J].
Agrawal, A ;
Shrive, AK ;
Greenhough, TJ ;
Volanakis, JE .
JOURNAL OF IMMUNOLOGY, 2001, 166 (06) :3998-4004
[4]   Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2 [J].
Aliprantis, AO ;
Yang, RB ;
Mark, MR ;
Suggett, S ;
Devaux, B ;
Radolf, JD ;
Klimpel, GR ;
Godowski, P ;
Zychlinsky, A .
SCIENCE, 1999, 285 (5428) :736-739
[5]   Toll signaling pathways in the innate immune response [J].
Anderson, KV .
CURRENT OPINION IN IMMUNOLOGY, 2000, 12 (01) :13-19
[6]   Toll-like receptor 2-mediated NF-κB activation requires a RacI-dependent pathway [J].
Arbibe, L ;
Mira, JP ;
Teusch, N ;
Kline, L ;
Guha, M ;
Mackman, N ;
Godowski, PJ ;
Ulevitch, RJ ;
Knaus, UG .
NATURE IMMUNOLOGY, 2000, 1 (06) :533-540
[7]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[8]   A conserved signaling pathway: The Drosophila Toll-Dorsal pathway [J].
Belvin, MP ;
Anderson, KV .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :393-416
[9]   Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-κB [J].
Bertin, J ;
Nir, WJ ;
Fischer, CM ;
Tayber, OV ;
Errada, PR ;
Grant, JR ;
Keilty, JJ ;
Gosselin, ML ;
Robison, KE ;
Wong, GHW ;
Glucksmann, MA ;
DiStefano, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :12955-12958
[10]   A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling [J].
Bowie, A ;
Kiss-Toth, E ;
Symons, JA ;
Smith, GL ;
Dower, SK ;
O'Neill, LAJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10162-10167