Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary

被引:30
作者
Dou, Changsheng [1 ,2 ]
Jiang, Song [2 ]
Ju, Qiangchang [2 ]
机构
[1] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2013年 / 64卷 / 06期
基金
中国博士后科学基金;
关键词
Magnetohydrodynamic equations; Bounded domain; Global existence; Low Mach number limit; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE LIMIT; VISCOSITY LIMIT; SINGULAR LIMITS; WEAK SOLUTIONS; FLOWS; FLUIDS; SYSTEMS;
D O I
10.1007/s00033-013-0311-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the compressible magnetohydrodynamic equations in a bounded smooth domain in with perfectly conducting boundary, and prove the global existence and uniqueness of smooth solutions around a rest state. Moreover, the low Mach limit of the solutions is verified for all time, provided that the initial data are well prepared.
引用
收藏
页码:1661 / 1678
页数:18
相关论文
共 37 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[3]  
[Anonymous], 1983, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[4]  
[Anonymous], 1996, OXFORD LECT SERIES M
[5]   Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case [J].
Bresch, D ;
Desjardins, B ;
Grenier, E ;
Lin, CK .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) :125-149
[6]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[7]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636
[8]   Low Mach number limit for viscous compressible flows [J].
Danchin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :459-475
[9]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[10]   Low Mach number limit of viscous compressible flows in the whole space [J].
Desjardins, B ;
Grenier, E .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2271-2279