RGmatch: matching genomic regions to proximal genes in omics data integration

被引:8
作者
Furio-Tari, Pedro [1 ]
Conesa, Ana [1 ,2 ]
Tarazona, Sonia [1 ,3 ]
机构
[1] Ctr Invest Principe Felipe, Gene Express & Epigen Program, Genom Gene Express Lab, Eduardo Primo Yufera 3, Valencia 46012, Spain
[2] Univ Florida, Inst Food & Agr Sci, Dept Microbiol & Cell Sci, Gainesville, FL 32603 USA
[3] Univ Politecn Valencia, Dept Appl Stat Operat Res & Qual, E-46022 Valencia, Spain
关键词
Associations; Gene; Genomic region; Peak; Omics integration; NGS; R/BIOCONDUCTOR PACKAGE; REGULATORY ELEMENTS; OPEN CHROMATIN; EXPRESSION; DNASEI; CHIP;
D O I
10.1186/s12859-016-1293-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The integrative analysis of multiple genomics data often requires that genome coordinates-based signals have to be associated with proximal genes. The relative location of a genomic region with respect to the gene (gene area) is important for functional data interpretation; hence algorithms that match regions to genes should be able to deliver insight into this information. Results: In this work we review the tools that are publicly available for making region-to-gene associations. We also present a novel method, RGmatch, a flexible and easy-to-use Python tool that computes associations either at the gene, transcript, or exon level, applying a set of rules to annotate each region-gene association with the region location within the gene. RGmatch can be applied to any organism as long as genome annotation is available. Furthermore, we qualitatively and quantitatively compare RGmatch to other tools. Conclusions: RGmatch simplifies the association of a genomic region with its closest gene. At the same time, it is a powerful tool because the rules used to annotate these associations are very easy to modify according to the researcher's specific interests. Some important differences between RGmatch and other similar tools already in existence are RGmatch's flexibility, its wide range of user options, compatibility with any annotatable organism, and its comprehensive and user-friendly output.
引用
收藏
页数:10
相关论文
共 10 条
[1]   Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics [J].
He, Housheng Hansen ;
Meyer, Clifford A. ;
Chen, Mei Wei ;
Jordan, V. Craig ;
Brown, Myles ;
Liu, X. Shirley .
GENOME RESEARCH, 2012, 22 (06) :1015-1025
[2]   Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities [J].
Heinz, Sven ;
Benner, Christopher ;
Spann, Nathanael ;
Bertolino, Eric ;
Lin, Yin C. ;
Laslo, Peter ;
Cheng, Jason X. ;
Murre, Cornelis ;
Singh, Harinder ;
Glass, Christopher K. .
MOLECULAR CELL, 2010, 38 (04) :576-589
[3]   An integrated software system for analyzing ChIP-chip and ChIP-seq data [J].
Ji, Hongkai ;
Jiang, Hui ;
Ma, Wenxiu ;
Johnson, David S. ;
Myers, Richard M. ;
Wong, Wing H. .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1293-1300
[4]   GREAT improves functional interpretation of cis-regulatory regions [J].
McLean, Cory Y. ;
Bristor, Dave ;
Hiller, Michael ;
Clarke, Shoa L. ;
Schaar, Bruce T. ;
Lowe, Craig B. ;
Wenger, Aaron M. ;
Bejerano, Gill .
NATURE BIOTECHNOLOGY, 2010, 28 (05) :495-U155
[5]   Predicting cell-type-specific gene expression from regions of open chromatin [J].
Natarajan, Anirudh ;
Yardimci, Galip Guerkan ;
Sheffield, Nathan C. ;
Crawford, Gregory E. ;
Ohler, Uwe .
GENOME RESEARCH, 2012, 22 (09) :1711-1722
[6]   Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains [J].
Shu, Wenjie ;
Chen, Hebing ;
Bo, Xiaochen ;
Wang, Shengqi .
NUCLEIC ACIDS RESEARCH, 2011, 39 (17) :7428-7443
[7]   Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity [J].
Song, Lingyun ;
Zhang, Zhancheng ;
Grasfeder, Linda L. ;
Boyle, Alan P. ;
Giresi, Paul G. ;
Lee, Bum-Kyu ;
Sheffield, Nathan C. ;
Graef, Stefan ;
Huss, Mikael ;
Keefe, Damian ;
Liu, Zheng ;
London, Darin ;
McDaniell, Ryan M. ;
Shibata, Yoichiro ;
Showers, Kimberly A. ;
Simon, Jeremy M. ;
Vales, Teresa ;
Wang, Tianyuan ;
Winter, Deborah ;
Zhang, Zhuzhu ;
Clarke, Neil D. ;
Birney, Ewan ;
Iyer, Vishwanath R. ;
Crawford, Gregory E. ;
Lieb, Jason D. ;
Furey, Terrence S. .
GENOME RESEARCH, 2011, 21 (10) :1757-1767
[8]   Seq2pathway: an R/Bioconductor package for pathway analysis of next-generation sequencing data [J].
Wang, Bin ;
Cunningham, John M. ;
Yang, Xinan .
BIOINFORMATICS, 2015, 31 (18) :3043-3045
[9]   Correlation Between DNase I Hypersensitive Site Distribution and Gene Expression in HeLa S3 Cells [J].
Wang, Ya-Mei ;
Zhou, Ping ;
Wang, Li-Yong ;
Li, Zhen-Hua ;
Zhang, Yao-Nan ;
Zhang, Yu-Xiang .
PLOS ONE, 2012, 7 (08)
[10]   ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization [J].
Yu, Guangchuang ;
Wang, Li-Gen ;
He, Qing-Yu .
BIOINFORMATICS, 2015, 31 (14) :2382-2383