Direct Operando Spectroscopic Observation of Oxygen Vacancies in Working Ceria-Based Gas Sensors

被引:31
作者
Elger, Ann-Kathrin [1 ]
Baranyai, Julian [1 ]
Hofmann, Kathrin [1 ]
Hess, Christian [1 ]
机构
[1] Tech Univ Darmstadt, Eduard Zintl Inst Anorgan & Phys Chem, Alarich Weiss Str 8, D-64287 Darmstadt, Germany
关键词
oxygen vacancies; gas sensors; operando; ceria; gold; mechanisms; OXIDE; INSIGHTS;
D O I
10.1021/acssensors.9b00521
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-oxide semiconductors are of great interest for gas-sensing applications. We provide new insights into the mode of operation of ceria-based gas sensors during ethanol gas sensing using combined operando Raman-gas-phase FTIR spectroscopy. Visible Raman spectroscopy is employed to monitor the presence of oxygen vacancies in ceria via F-2g mode softening, while simultaneously recorded FTIR spectra capture the gas-phase composition. Such an experimental approach allowing the direct observation of oxygen vacancies in metal-oxide gas sensors has not been reported in the literature. By systematically varying the gas atmosphere and temperature, we can relate the sensor response to the spectroscopic signals, enabling us to obtain new fundamental insight into the functioning of metal-oxide semiconductor gas sensors, as well as their differences from heterogeneous catalysts.
引用
收藏
页码:1497 / 1501
页数:9
相关论文
共 21 条
[1]  
[Anonymous], SENSORS BASEL
[2]   Metal oxide-based gas sensor research: How to? [J].
Barsan, N. ;
Koziej, D. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :18-35
[3]   Gold-Loaded Tin Dioxide Gas Sensing Materials: Mechanistic Insights and the Role of Gold Dispersion [J].
Degler, David ;
Rank, Sven ;
Mueller, Sabrina ;
Pereira de Carvalho, Hudson W. ;
Grunwaldt, Jan-Dierk ;
Weimar, Udo ;
Barsan, Nicolae .
ACS SENSORS, 2016, 1 (11) :1322-1329
[4]   Semiconductor metal oxide gas sensors: A review [J].
Dey, Ananya .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 229 :206-217
[5]   Ceria and Its Defect Structure: New Insights from a Combined Spectroscopic Approach [J].
Filtschew, Anastasia ;
Hofmann, Kathrin ;
Hess, Christian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (12) :6694-6703
[6]   In situ and operando spectroscopy for assessing mechanisms of gas sensing [J].
Gurlo, Alexander ;
Riedel, Ralf .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (21) :3826-3848
[7]   Interplay between O2 and SnO2:: Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen [J].
Gurlo, Alexander .
CHEMPHYSCHEM, 2006, 7 (10) :2041-2052
[8]   SURFACE PROCESSES IN THE DETECTION OF REDUCING GASES WITH SNO2-BASED DEVICES [J].
KOHL, D .
SENSORS AND ACTUATORS, 1989, 18 (01) :71-113
[9]   Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J].
Kolmakov, A ;
Moskovits, M .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :151-180
[10]   Metal oxides for solid-state gas sensors: What determines our choice? [J].
Korotcenkov, G. .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 139 (01) :1-23