The geometry of Hida families II: A-adic (φ, Γ)-modules and A-adic Hodge theory

被引:1
作者
Cais, Bryden [1 ]
机构
[1] Univ Arizona, Dept Math, 617 N Santa Rita Ave, Tucson, AZ 85721 USA
关键词
Hida families; integral p-adic Hodge theory; de Rham cohomology; crystalline cohomology; GALOIS REPRESENTATIONS; COHOMOLOGY; MODULES; TOWERS;
D O I
10.1112/S0010437X17007680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the A-adic crystalline and Dieudonne analogues of Hida's ordinary A-adic etale cohomology, and employ integral p-adic Hodge theory to prove A-adic comparison isomorphisms between these cohomologies and the A-adic de Rham cohomology studied in Cais [The geometry of Hida families I: A-adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida's A-adic etale cohomology. As applications of our work, we provide a 'cohomological' construction of the family of (phi, Gamma)-modules attached to Hida's ordinary A-adic etale cohomology by Dee [Phi-Gamma modules for families of Galois representations, J. Algebra 235 (2001), 636-664], and we give a new and purely geometric proof of Hida's finiteness and control theorems. We also prove suitable A-adic duality theorems for each of the cohomologies we construct.
引用
收藏
页码:719 / 760
页数:42
相关论文
共 43 条
[1]  
[Anonymous], 1985, ANN MATH STUDIES
[2]  
[Anonymous], 1994, Contemp. Math.
[3]   Limits of crystalline representations [J].
Berger, L .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1473-1498
[4]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[5]  
Berger L, 2010, ASTERISQUE, P155
[6]  
Berthelot P., 1974, Lecture Notes in Mathematics, V407
[7]  
Berthelot P., 1979, JOURNEES GEOMERIE AL, VI, P17
[8]  
BERTHELOT P, 1979, ASTERISQUE, V63, P17
[9]  
Bosch S., 1990, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Results in Mathematics and Related Areas (3), V21
[10]  
Cais B, 2018, MATH ANN, V372, P781, DOI 10.1007/s00208-017-1608-1