Neimark-Sacker Bifurcation of a Two-Dimensional Discrete-Time Chemical Model

被引:6
作者
Khan, A. Q. [1 ]
机构
[1] Univ Azad Jammu & Kashmir, Dept Math, Muzaffarabad 13100, Pakistan
关键词
Oscillators; (mechanical); -; Bifurcation; (mathematics);
D O I
10.1155/2020/3936242
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the local dynamics and Neimark-Sacker bifurcation of a two-dimensional glycolytic oscillator model in the interior ofDouble-struck capital R-+(2) are explored. It is investigated that for all alpha and beta, the model has a unique equilibrium point:P-xy(+)(alpha/beta + alpha(2)), alpha) Further about P-xy(+)(alpha/beta + alpha(2)), alpha), local dynamics and the existence of bifurcation are explored. It is investigated about P-xy(+)(alpha/beta + alpha(2)),alpha) that the glycolytic oscillator model undergoes no bifurcation except the Neimark-Sacker bifurcation. Some simulations are given to verify the obtained results. Finally, bifurcation diagrams and the corresponding maximum Lyapunov exponent are presented for the glycolytic oscillator model.
引用
收藏
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 1995, ELEMENTS APPL BIFURC
[2]  
Back Les., 2002, SOCIOL RES ONLINE, V7
[3]  
Berg J. M., 2002, BIOCHEMISTRY-US
[4]   DESIGN OF GLYCOLYSIS [J].
BOITEUX, A ;
HESS, B .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1981, 293 (1063) :5-22
[5]   Pathway alignment: application to the comparative analysis of glycolytic enzymes [J].
Dandekar, T ;
Schuster, S ;
Snel, B ;
Huynen, M ;
Bork, P .
BIOCHEMICAL JOURNAL, 1999, 343 :115-124
[6]  
Edeki SO., 2015, INT J MATH ANAL, V9, P403, DOI 10.12988/ijma.2015.412411
[7]  
Garrett R.H., 1999, Biochemistry
[8]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[9]   Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response [J].
Hu, Zengyun ;
Teng, Zhidong ;
Zhang, Long .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2356-2377
[10]   Bifurcation and chaos in discrete-time predator-prey system [J].
Jing, ZJ ;
Yang, JP .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :259-277