Characteristics of rogue waves on a soliton background in a coupled nonlinear Schrodinger equation

被引:15
作者
Wang, Xiu-Bin [1 ]
Han, Bo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamics; solitons; rogue waves; BOUNDARY VALUE-PROBLEMS; DARK SOLITONS; BREATHER; DYNAMICS; INTEGRABILITY; SYSTEM;
D O I
10.1002/mma.5532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a coupled nonlinear Schrodinger (CNLS) equation, which can describe evolution of localized waves in a two-mode nonlinear fiber, is under investigation. By using the Darboux-dressing transformation, the new localized wave solutions of the equation are well constructed with a detailed derivation. These solutions reveal rogue waves on a soliton background. Moreover, the main characteristics of the solutions are discussed with some graphics. Our results would be of much importance in predicting and enriching rogue wave phenomena in nonlinear wave fields.
引用
收藏
页码:2586 / 2596
页数:11
相关论文
共 59 条
[1]  
Agrawal G., 2010, Nonlinear Fiber Optics, Vfourth
[2]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[3]   Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions [J].
Ankiewicz, Adrian ;
Wang, Yan ;
Wabnitz, Stefan ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2014, 89 (01)
[4]   OBSERVATION OF MODULATIONAL INSTABILITY IN A MULTICOMPONENT PLASMA WITH NEGATIVE-IONS [J].
BAILUNG, H ;
NAKAMURA, Y .
JOURNAL OF PLASMA PHYSICS, 1993, 50 :231-242
[5]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[6]   Persistence of rogue waves in extended nonlinear Schrodinger equations: Integrable Sasa-Satsuma case [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICS LETTERS A, 2012, 376 (18) :1558-1561
[7]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[8]   Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field [J].
Bayindir, Cihan .
PHYSICAL REVIEW E, 2016, 93 (03)
[9]   Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation [J].
Bertola, Marco ;
El, Gennady A. ;
Tovbis, Alexander .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194)
[10]   Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides [J].
Bludov, Yuliy V. ;
Konotop, Vladimir V. ;
Akhmediev, Nail .
OPTICS LETTERS, 2009, 34 (19) :3015-3017