Fractional equations with bounded primitive

被引:66
作者
Bisci, Giovanni Molica [1 ]
机构
[1] Univ Reggio Calabria, Dept PAU, I-89124 Reggio Di Calabria, Italy
关键词
Fractional equations; Multiple solutions; Critical points results; OPERATORS;
D O I
10.1016/j.aml.2013.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns with a class of nonlocal fractional Laplacian problems depending on two real parameters. Our approach is based on variational methods. We establish the existence of three weak solutions via a recent abstract result by Ricceri about nonlocal equations. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 2010, Encyclopedia of Mathematics and its Applications
[2]   Three solutions for some Dirichlet and Neumann nonlocal problems [J].
Cammaroto, F. ;
Vilasi, L. .
APPLICABLE ANALYSIS, 2013, 92 (08) :1717-1730
[3]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[4]   On a three critical points theorem [J].
Ricceri, B .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :220-226
[5]  
Ricceri B, 2010, STUD U BABES-BOL MAT, V55, P107
[6]  
Servadei R., 2013, T AM MATH S IN PRESS
[7]  
Servadei R., 2013, REV MAT IBE IN PRESS, V29
[8]  
Servadei R., 2013, ADV NONLINE IN PRESS, V3
[9]   VARIATIONAL METHODS FOR NON-LOCAL OPERATORS OF ELLIPTIC TYPE [J].
Servadei, Raffaella ;
Valdinoci, Enrico .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (05) :2105-2137
[10]   Mountain Pass solutions for non-local elliptic operators [J].
Servadei, Raffaella ;
Valdinoci, Enrico .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) :887-898