Super-Resolution Fluorescence Imaging for Semiconductor Nanoscale Metrology and Inspection

被引:15
作者
Nguyen, Duyen Thi [1 ]
Mun, Seohyun [1 ]
Park, HyunBum [1 ]
Jeong, Uidon [1 ]
Kim, Geun-ho [1 ]
Lee, Seongsil [2 ]
Jun, Chung-Sam [2 ]
Sung, Myung Mo [1 ]
Kim, Doory [1 ,3 ,4 ]
机构
[1] Hanyang Univ, Dept Chem, Seoul 04763, South Korea
[2] Samsung Elect, Semicond R&D Ctr, Adv Mfg Engn Team, Hwaseong Si 18448, Gyeonggi Do, South Korea
[3] Hanyang Univ, Res Inst Convergence Basic Sci, Inst Nano Sci & Technol, Seoul 04763, South Korea
[4] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
stochastic optical reconstruction microscopy (STORM); semiconductor imaging; semiconductor metrology; wafer inspection; MICROSCOPY; EMISSION; BREAKING; DEFECTS; LIMIT; FIELD;
D O I
10.1021/acs.nanolett.2c03848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increase in the number and complexity of process levels in semiconductor production has driven the need for the development of new measurement methods that can evaluate semiconductor devices at the critical dimensions of fine patterns and simultaneously inspect nanoscale contaminants or defects. However, conventional optical inspection methods often fail to resolve device patterns or defects at the level of tens of nanometers required for device development owing to their diffraction-limited resolutions. In this study, we used the stochastic optical reconstruction microscopy (STORM) technique to image semiconductor nanostructures with feature sizes as small as 30 nm and detect individual 20 nm-diameter contaminants. STORM imaging of semiconductor nanopatterns is based on the development of a selective labeling method of fluorophores for a negative silicon oxide surface using the charge interaction of positive polyethylenimine molecules. This study demonstrates the potential of STORM for nanoscale metrology and in-line defect inspection of semiconductor integrated circuits.
引用
收藏
页码:10080 / 10087
页数:8
相关论文
共 42 条
[1]  
Abbe E., 1873, Archiv fur Mikroskopische Anatomie, V9, P413, DOI 10.1007/BF02956173
[2]  
Adair J.H., 2001, ENCY MAT SCI TECHNOL, P1, DOI DOI 10.1016/B0-08-043152-6/01622-3
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Optical dimensional metrology at Physikalisch-Technische Bundesanstalt (PTB) on deep sub-wavelength nanostructured surfaces [J].
Bodermann, B. ;
Ehret, G. ;
Endres, J. ;
Wurm, M. .
SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2016, 4 (02)
[5]   THE ZETA-POTENTIAL OF SILICON-NITRIDE THIN-FILMS [J].
BOUSSE, L ;
MOSTARSHED, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 302 (1-2) :269-274
[6]  
Cadien KC, 2018, HANDBOOK OF THIN FILM DEPOSITION, 4TH EDITION, P317, DOI 10.1016/B978-0-12-812311-9.00010-4
[7]  
Calaon M., 2018, CIRP ENCY PRODUCTION, P1
[8]   Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging [J].
Cang, Hu ;
Labno, Anna ;
Lu, Changgui ;
Yin, Xiaobo ;
Liu, Ming ;
Gladden, Christopher ;
Liu, Yongmin ;
Zhang, Xiang .
NATURE, 2011, 469 (7330) :385-+
[9]  
Custance O, 2009, NAT NANOTECHNOL, V4, P803, DOI [10.1038/nnano.2009.347, 10.1038/NNANO.2009.347]
[10]   Atomic-Resolution Imaging with a Sub-50-pm Electron Probe [J].
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, Christian ;
Dahmen, Ulrich .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)