Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory

被引:463
作者
Simsek, M. [1 ]
Reddy, J. N. [2 ]
机构
[1] Yildiz Tech Univ, Dept Civil Engn, TR-34210 Esenler, Turkey
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Bending; Vibration; Microbeam; Functionally graded material; Modified couple stress theory; Higher order beam theory; SHEAR DEFORMATION-THEORY; TIMOSHENKO BEAM; DYNAMIC-ANALYSIS; MODEL; FREQUENCY; BEHAVIOR;
D O I
10.1016/j.ijengsci.2012.12.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Static bending and free vibration of functionally graded (FG) microbeams are examined in this paper based on the modified couple stress theory (MCST) and various higher order beam theories (HOBTs). This non-classical microbeam model incorporates the material length scale parameter which can capture the size effect. The material properties of the FG microbeams are assumed to vary in the thickness direction and are estimated through the Mod-Tanaka homogenization technique. The governing equations and the related boundary conditions are derived using Hamilton's principle. The Navier-type solution is developed for simply-supported boundary conditions. Numerical results are presented to investigate the influences the material length scale parameter, different material compositions, and shear deformation on the bending and free vibration behavior of FG microbeams. Some of the present results are compared with the previously published results to establish the validity of the present formulation. It is established that the present FG microbeams exhibit significant size-dependence when the thickness of the microbeam approaches to the material length scale parameter. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 51 条
[1]   Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory [J].
Akgoz, Bekir ;
Civalek, Omer .
ARCHIVE OF APPLIED MECHANICS, 2012, 82 (03) :423-443
[2]   Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams [J].
Akgoz, Bekir ;
Civalek, Omer .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (11) :1268-1280
[3]   Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory [J].
Ansari, R. ;
Gholami, R. ;
Sahmani, S. .
COMPOSITE STRUCTURES, 2011, 94 (01) :221-228
[4]   A nonlinear Timoshenko beam formulation based on the modified couple stress theory [J].
Asghari, M. ;
Kahrobaiyan, M. H. ;
Ahmadian, M. T. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (12) :1749-1761
[5]   On the size-dependent behavior of functionally graded micro-beams [J].
Asghari, M. ;
Ahmadian, M. T. ;
Kahrobaiyan, M. H. ;
Rahaeifard, M. .
MATERIALS & DESIGN, 2010, 31 (05) :2324-2329
[6]   Free vibration analysis of functionally graded beams with simply supported edges [J].
Aydogdu, Metin ;
Taskin, Vedat .
MATERIALS & DESIGN, 2007, 28 (05) :1651-1656
[7]   A new shear deformation theory for laminated composite plates [J].
Aydogdu, Metin .
COMPOSITE STRUCTURES, 2009, 89 (01) :94-101
[8]   A new beam finite element for the analysis of functionally graded materials [J].
Chakraborty, A ;
Gopalakrishnan, S ;
Reddy, JN .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2003, 45 (03) :519-539
[9]   A model of composite laminated Reddy beam based on a modified couple-stress theory [J].
Chen, Wanji ;
Chen Weiwei ;
Sze, K. Y. .
COMPOSITE STRUCTURES, 2012, 94 (08) :2599-2609
[10]   A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY [J].
FLECK, NA ;
HUTCHINSON, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (12) :1825-1857