Anisotropic magnetocaloric response in AlFe2B2

被引:56
作者
Barua, R. [1 ]
Lejeune, B. T. [1 ]
Ke, L. [2 ]
Hadjipanayis, G. [3 ]
Levin, E. M. [2 ,6 ]
McCallum, R. W. [4 ]
Kramer, M. J. [2 ]
Lewis, L. H. [1 ,5 ]
机构
[1] Northeastern Univ, Coll Engn, Boston, MA 02115 USA
[2] Ames Lab, Div Mat Sci & Engn, Ames, IA USA
[3] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[4] McCallum Consulting LLC, Santa Fe, NM USA
[5] Northeastern Univ, Mech Engn, Boston, MA 02115 USA
[6] Iowa State Univ, Dept Phys & Astron, Ames, IA USA
关键词
MAGNETIC REFRIGERATION; TRANSITION; CRYSTAL; ALLOYS;
D O I
10.1016/j.jallcom.2018.02.205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe2B2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K similar to 0.9MJ/m(3) at 50 K. Magnetic entropy change curves measured near the Curie transition temperature of 285 K reveal a large rotating magnetic entropy change of 1.3 J kg(-1)K(-1) at mu H-0(app) = 2 T, consistent with large differences in magnetic entropy change Delta S-mag measured along the a-and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe2B2 for thermal management applications. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:505 / 512
页数:8
相关论文
共 43 条
[1]   Ternary Borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The First Members of the Series (CrB2)nCrAl with n=1, 2, 3 and a Unifying Concept for Ternary Borides as MAB-Phases [J].
Ade, Martin ;
Hillebrecht, Harald .
INORGANIC CHEMISTRY, 2015, 54 (13) :6122-6135
[2]  
Akulov NS, 1940, J PHYS-USSR, V3, P31
[3]   Phase analysis of AlFe2B2 by synchrotron X-ray diffraction, magnetic and Mssbauer studies [J].
Ali, Tahir ;
Khan, M. N. ;
Ahmed, E. ;
Ali, Asad .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2017, 27 (02) :251-256
[4]   Advanced materials for magnetic cooling: Fundamentals and practical aspects [J].
Balli, M. ;
Jandl, S. ;
Fournier, P. ;
Kedous-Lebouc, A. .
APPLIED PHYSICS REVIEWS, 2017, 4 (02)
[5]   Review of the Magnetocaloric Effect in RMnO3 and RMn2O5 Multiferroic Crystals [J].
Balli, Mohamed ;
Roberge, Benoit ;
Fournier, Patrick ;
Jandl, Serge .
CRYSTALS, 2017, 7 (02)
[6]   Multivariable tuning of the magnetostructural response of a Ni-modified FeRh compound [J].
Barua, R. ;
McDonald, I. ;
Jimenez-Villacorta, F. ;
Heiman, D. ;
Lewis, L. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 689 :1044-1050
[7]   Magnetization and the magneto-caloric effect [J].
Bitter, F .
PHYSICAL REVIEW, 1931, 38 (03) :528-548
[8]   Magnetocaloric effect in random magnetic anisotropy materials [J].
Bohigas, X ;
Tejada, J ;
Torres, F ;
Arnaudas, JI ;
Joven, E ;
del Moral, A .
APPLIED PHYSICS LETTERS, 2002, 81 (13) :2427-2429
[9]   A review on Mn based materials for magnetic refrigeration:: Structure and properties [J].
Bruck, E. ;
Tegus, O. ;
Thanh, D. T. Cam ;
Trung, Nguyen T. ;
Buschow, K. H. J. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (05) :763-770
[10]   Magnetic structure of the magnetocaloric compound AlFe2B2 [J].
Cedervall, Johan ;
Andersson, Mikael Svante ;
Sarkar, Tapati ;
Delczeg-Czirjak, Erna K. ;
Bergqvist, Lars ;
Hansen, Thomas C. ;
Beran, Premysl ;
Nordblad, Per ;
Sahlberg, Martin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 664 :784-791