GENERALIZED HARMONIC NUMBER SUMS AND QUASISYMMETRIC FUNCTIONS

被引:3
作者
Chen, Kwang-Wu [1 ]
机构
[1] Univ Taipei, Dept Math, Taipei, Taiwan
关键词
symmetric functions; quasisymmetric functions; Riemann zeta values; multiple zeta values; multiple Hurwitz zeta functions; IDENTITIES; SERIES;
D O I
10.1216/rmj.2020.50.1253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We express some general type of infinite series such as Sigma F-infinity(n=1)(H-n((m))(z), H-n((2m)) (z), ...., H-n((lm)) (z))/(n + z)(s1) (n + 1 + z)s(2) ...(n + k - + z)(sk,) where F(x(1),...x(l)) is an element of Q([X-1, ... x(l)], H-n((m))(z) = Sigma(n)(j=1)(1/j+z)(m), z is an element of (-1, 0], and S-1,..., s(k) are nonnegative integers with S-1 + ... + s(k) >= 2, as a linear combination of multiple Hurwitz zeta functions and some special values of k(n)((m)) (z).
引用
收藏
页码:1253 / 1275
页数:23
相关论文
共 32 条
[1]  
Akiyama S., 2002, ANAL NUMBER THEORY B, V6, P1
[2]  
Bang S., 1999, AM MATH MONTHLY, V106, P588
[3]   On some combinatorial identities and harmonic sums [J].
Batir, Necdet .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) :1695-1709
[4]  
Borwein D., P AM MATH SOC, V123, P4
[5]  
Chen K.-W., MEDITERR J MATH, V14, P3
[6]   Sum formulas of multiple zeta values with arguments multiples of a common positive integer [J].
Chen, Kwang-Wu ;
Chung, Chan-Liang ;
Eie, Minking .
JOURNAL OF NUMBER THEORY, 2017, 177 :479-496
[7]   Generalized harmonic numbers and Euler sums [J].
Chen, Kwang-Wu .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) :513-528
[8]  
Choi J., 2014, ABSTR APPL ANAL, P10
[9]  
Chu WC, 1997, ACTA ARITH, V82, P103
[10]   Infinite Series Identities on Harmonic Numbers [J].
Chu, Wenchang .
RESULTS IN MATHEMATICS, 2012, 61 (3-4) :209-221