Pseudotensors and quasilocal energy-momentum

被引:189
作者
Chang, CC [1 ]
Nester, JM
Chen, CM
机构
[1] Natl Cent Univ, Dept Phys, Chungli 320, Taiwan
[2] Natl Cent Univ, Ctr Complex Syst, Chungli 320, Taiwan
[3] Moscow MV Lomonosov State Univ, Dept Theoret Phys, Moscow 119899, Russia
关键词
D O I
10.1103/PhysRevLett.83.1897
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Early energy-momentum investigations for gravitating systems gave reference-frame-dependent pseudotensors; later the quasilocal idea was developed. Quasilocal energy-momentum can be determined by the Hamiltonian boundary term, which also identifies the variables to be held fixed on the boundary. We show that a pseudotensor corresponds to a Hamiltonian boundary term. Hence, they are quasilocal and acceptable; each is the energy-momentum density for a definite physical situation with certain boundary conditions. These conditions are identified for well-known pseudotensors.
引用
收藏
页码:1897 / 1901
页数:5
相关论文
共 31 条
  • [1] Energy and angular momentum of charged rotating black holes
    Aguirregabiria, JM
    Chamorro, A
    Virbhadra, KS
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (11) : 1393 - 1400
  • [2] [Anonymous], 1973, GRAVITATION
  • [3] ENERGY-MOMENTUM CONSERVATION IN GRAVITY THEORIES
    BAK, D
    CANGEMI, D
    JACKIW, R
    [J]. PHYSICAL REVIEW D, 1994, 49 (10): : 5173 - 5181
  • [4] SPIN AND ANGULAR MOMENTUM IN GENERAL RELATIVITY
    BERGMANN, PG
    THOMSON, R
    [J]. PHYSICAL REVIEW, 1953, 89 (02): : 400 - 407
  • [5] POSITIVITY AND DEFINITIONS OF MASS
    BERGQVIST, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (08) : 1917 - 1922
  • [6] QUASI-LOCAL ENERGY AND CONSERVED CHARGES DERIVED FROM THE GRAVITATIONAL ACTION
    BROWN, JD
    YORK, JW
    [J]. PHYSICAL REVIEW D, 1993, 47 (04): : 1407 - 1419
  • [7] CHANG CC, 1998, THESIS NATL CENTRAL
  • [8] Quasilocal quantities for general relativity and other gravity theories
    Chen, CM
    Nester, JM
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) : 1279 - 1304
  • [9] QUASI-LOCAL ENERGY-MOMENTUM FOR GEOMETRIC GRAVITY THEORIES
    CHEN, CM
    NESTER, JM
    TUNG, RS
    [J]. PHYSICS LETTERS A, 1995, 203 (01) : 5 - 11
  • [10] Christodoulou D., 1986, Contemp. Math, V71, P9