A SUMMARY ON SYMMETRIES AND CONSERVED QUANTITIES OF AUTONOMOUS HAMILTONIAN SYSTEMS

被引:10
作者
Roman-Roy, Narciso [1 ]
机构
[1] Univ Politecn Cataluna, Dept Math, Edificio C-3,Campus Norte UPC,C Jordi Girona 1, Barcelona 08034, Spain
关键词
Symmetries; conserved quantities; Hamiltonian systems; Noether theorem; symplectic manifolds; COMPATIBLE POISSON BRACKETS; NON-NOETHER SYMMETRIES; DYNAMICAL SYMMETRIES; CONSTANTS; MOTION; TODA; THEOREM;
D O I
10.3934/jgm.2020009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A complete geometric classification of symmetries of autonomous Hamiltonian systems is established; explaining how to obtain their associated conserved quantities in all cases. In particular, first we review well-known results and properties about the symmetries of the Hamiltonian and of the symplectic form and then some new kinds of non-symplectic symmetries and their conserved quantities are introduced and studied.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 38 条
  • [1] Abraham RH., 1978, FDN MECH
  • [2] [Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
  • [3] [Anonymous], 1985, Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction
  • [4] [Anonymous], 1989, MATH METHODS CLASSIC
  • [5] Chiral asymmetry in propagation of soliton defects in crystalline backgrounds
    Arancibia, Adrian
    Plyushchay, Mikhail S.
    [J]. PHYSICAL REVIEW D, 2015, 92 (10):
  • [6] NON-NOETHER CONSERVATION LAWS
    Birtea, Petre
    Tudoran, Razvan M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (04)
  • [7] Compatible Poisson brackets on Lie algebras
    Bolsinov, AV
    Borisov, AV
    [J]. MATHEMATICAL NOTES, 2002, 72 (1-2) : 10 - 30
  • [8] COMPATIBLE POISSON BRACKETS ON LIE-ALGEBRAS AND COMPLETENESS OF FAMILIES OF FUNCTIONS IN INVOLUTION
    BOLSINOV, AV
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 69 - 90
  • [9] NON-NOETHER CONSTANTS OF MOTION
    CARINENA, JF
    IBORT, LA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01): : 1 - 7
  • [10] Non-symplectic symmetries and bi-Hamiltonian structures of the rational harmonic oscillator
    Cariñena, JF
    Marmo, G
    Rañada, MF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (47): : L679 - L686