A second-order accurate material-order-independent interface reconstruction technique for multi-material flow simulations

被引:39
|
作者
Schofield, Samuel P. [1 ]
Garimella, Rao V. [1 ]
Francois, Marianne M. [1 ]
Loubere, Raphael [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Toulouse, CNRS, Math Inst Toulouse, Toulouse, France
关键词
Volume-of-fluid; Interface reconstruction; Multi-material flow; Material-order independence; Linear reconstruction; Centroids; Power diagrams; VOLUME TRACKING; FREE-SURFACE; ALGORITHMS;
D O I
10.1016/j.jcp.2008.09.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new, second-order accurate, volume conservative, material-order-independent interface reconstruction method for multi-material flow simulations is presented. First, materials are located in multi-material computational cells using a piecewise linear reconstruction of the volume fraction function. These material locator points are then used as generators to reconstruct the interface with a weighted Voronoi diagram that matches the volume fractions. The interfaces are then improved by minimizing an objective function that smoothes interface normals while enforcing convexity and volume constraints for the pure material subcells. Convergence tests are shown demonstrating second-order accuracy. Static and dynamic examples are shown illustrating the superior performance of the method over existing material-order-dependent methods. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:731 / 745
页数:15
相关论文
共 50 条
  • [21] Second-order cone and semidefinite representations of material failure criteria
    Bisbos, C. D.
    Pardalos, P. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 134 (02) : 275 - 301
  • [22] A second-order immersed interface technique for an elliptic Neumann problem
    Bouchon, Francois
    Peichl, Gunther H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) : 400 - 420
  • [23] Forced Nonlinear Precession of the Second-Order Magnetization in a Magnetoelastic Material
    Vlasov, V. S.
    Kirushev, M. S.
    Shavrov, V. G.
    Shcheglov, V. I.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2019, 64 (01) : 41 - 51
  • [24] Forced Nonlinear Precession of the Second-Order Magnetization in a Magnetoelastic Material
    V. S. Vlasov
    M. S. Kirushev
    V. G. Shavrov
    V. I. Shcheglov
    Journal of Communications Technology and Electronics, 2019, 64 : 41 - 51
  • [25] Second-Order Cone and Semidefinite Representations of Material Failure Criteria
    C. D. Bisbos
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2007, 134 : 275 - 301
  • [26] Second-order accurate FDTD technique with subgridding modeling in TE mode
    Ding, Hai
    Chu, Qing-Xin
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2009, 36 (01): : 162 - 165
  • [27] Modelling of two-phase flow with second-order accurate scheme
    Tiselj, I
    Petelin, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (02) : 503 - 521
  • [28] Application of second-order adjoint technique for conduit flow problem
    Kurahashi, T.
    Kawahara, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (11) : 1269 - 1290
  • [29] SbF3: A new second-order nonlinear optical material
    Zhang, Gang
    Liu, Tao
    Zhu, Tianxiang
    Qin, Jingui
    Wu, Yicheng
    Chen, Chuangtian
    OPTICAL MATERIALS, 2008, 31 (01) : 110 - 113
  • [30] What is second-order vision for? Discriminating illumination versus material changes
    Schofield, Andrew J.
    Rock, Paul B.
    Sun, Peng
    Jiang, Xiaoyue
    Georgeson, Mark A.
    JOURNAL OF VISION, 2010, 10 (09):