Optimal and suboptimal quadratic forms for noncentered Gaussian processes

被引:16
作者
Grebenkov, Denis S. [1 ]
机构
[1] Ecole Polytech, Phys Mat Condensee Lab, CNRS, UMR 7643, F-91128 Palaiseau, France
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 03期
关键词
SINGLE-PARTICLE TRACKING; ANOMALOUS DIFFUSION;
D O I
10.1103/PhysRevE.88.032140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Individual random trajectories of stochastic processes are often analyzed by using quadratic forms such as time averaged (TA) mean square displacement (MSD) or velocity auto-correlation function (VACF). The appropriate quadratic form is expected to have a narrow probability distribution in order to reduce statistical uncertainty of a single measurement. We consider the problem of finding the optimal quadratic form that minimizes a chosen cumulant moment (e. g., the variance) of the probability distribution, under the constraint of fixed mean value. For discrete noncentered Gaussian processes, we construct the optimal quadratic form by using the spectral representation of cumulant moments. Moreover, we obtain a simple explicit formula for the smallest achievable cumulant moment that may serve as a quality benchmark for other quadratic forms. We illustrate the optimality issues by comparing the optimal variance with the variances of the TA MSD and TA VACF of fractional Brownian motion superimposed with a constant drift and independent Gaussian noise.
引用
收藏
页数:10
相关论文
共 31 条
[11]   Ergodic properties of fractional Brownian-Langevin motion [J].
Deng, Weihua ;
Barkai, Eli .
PHYSICAL REVIEW E, 2009, 79 (01)
[12]   Physical nature of bacterial cytoplasm [J].
Golding, I ;
Cox, EC .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[13]   NMR survey of reflected Brownian motion [J].
Grebenkov, Denis S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (03) :1077-1137
[14]   Probability distribution of the time-averaged mean-square displacement of a Gaussian process [J].
Grebenkov, Denis S. .
PHYSICAL REVIEW E, 2011, 84 (03)
[15]   Time-averaged quadratic functionals of a Gaussian process [J].
Grebenkov, Denis S. .
PHYSICAL REVIEW E, 2011, 83 (06)
[16]  
Harville D. A., 2008, Matrix Algebra from a Statistician's Perspective
[17]   In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules [J].
Jeon, Jae-Hyung ;
Tejedor, Vincent ;
Burov, Stas ;
Barkai, Eli ;
Selhuber-Unkel, Christine ;
Berg-Sorensen, Kirstine ;
Oddershede, Lene ;
Metzler, Ralf .
PHYSICAL REVIEW LETTERS, 2011, 106 (04)
[18]   Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries [J].
Jeon, Jae-Hyung ;
Metzler, Ralf .
PHYSICAL REVIEW E, 2010, 81 (02)
[19]  
Kolmogorov A., 1940, Doklady Academy of Sciences URSS (NS), V26, P115
[20]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+