Optimal and suboptimal quadratic forms for noncentered Gaussian processes

被引:16
作者
Grebenkov, Denis S. [1 ]
机构
[1] Ecole Polytech, Phys Mat Condensee Lab, CNRS, UMR 7643, F-91128 Palaiseau, France
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 03期
关键词
SINGLE-PARTICLE TRACKING; ANOMALOUS DIFFUSION;
D O I
10.1103/PhysRevE.88.032140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Individual random trajectories of stochastic processes are often analyzed by using quadratic forms such as time averaged (TA) mean square displacement (MSD) or velocity auto-correlation function (VACF). The appropriate quadratic form is expected to have a narrow probability distribution in order to reduce statistical uncertainty of a single measurement. We consider the problem of finding the optimal quadratic form that minimizes a chosen cumulant moment (e. g., the variance) of the probability distribution, under the constraint of fixed mean value. For discrete noncentered Gaussian processes, we construct the optimal quadratic form by using the spectral representation of cumulant moments. Moreover, we obtain a simple explicit formula for the smallest achievable cumulant moment that may serve as a quality benchmark for other quadratic forms. We illustrate the optimality issues by comparing the optimal variance with the variances of the TA MSD and TA VACF of fractional Brownian motion superimposed with a constant drift and independent Gaussian noise.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Time-averaged MSD of Brownian motion [J].
Andreanov, Alexei ;
Grebenkov, Denis S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[2]  
[Anonymous], 1999, Mathematical Methods of Statistics
[3]   Temporal Analysis of Active and Passive Transport in Living Cells [J].
Arcizet, Delphine ;
Meier, Boern ;
Sackmann, Erich ;
Raedler, Joachim O. ;
Heinrich, Doris .
PHYSICAL REVIEW LETTERS, 2008, 101 (24)
[4]   Statistics of camera-based single-particle tracking [J].
Berglund, Andrew J. .
PHYSICAL REVIEW E, 2010, 82 (01)
[5]   Optical trapping microrheology in cultured human cells [J].
Bertseva, E. ;
Grebenkov, D. ;
Schmidhauser, P. ;
Gribkova, S. ;
Jeney, S. ;
Forro, L. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
[6]  
Bouchaud J.-P., 2003, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management
[7]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[8]   Optimal fits of diffusion constants from single-time data points of Brownian trajectories [J].
Boyer, Denis ;
Dean, David S. ;
Mejia-Monasterio, Carlos ;
Oshanin, Gleb .
PHYSICAL REVIEW E, 2012, 86 (06)
[9]   Optimal estimates of the diffusion coefficient of a single Brownian trajectory [J].
Boyer, Denis ;
Dean, David S. ;
Mejia-Monasterio, Carlos ;
Oshanin, Gleb .
PHYSICAL REVIEW E, 2012, 85 (03)
[10]   Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking [J].
Burov, Stas ;
Jeon, Jae-Hyung ;
Metzler, Ralf ;
Barkai, Eli .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (05) :1800-1812