Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens

被引:73
|
作者
Galen, Spencer C. [1 ,2 ]
Natarajan, Chandrasekhar [3 ]
Moriyama, Hideaki [3 ]
Weber, Roy E. [4 ]
Fago, Angela [4 ]
Benham, Phred M. [5 ]
Chavez, Andrea N. [1 ,2 ]
Cheviron, Zachary A. [5 ]
Storz, Jay F. [3 ]
Witt, Christopher C. [1 ,2 ]
机构
[1] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Museum Southwestern Biol, Albuquerque, NM 87131 USA
[3] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
[4] Aarhus Univ, Dept Biosci, Zoophysiol, DK-8000 Aarhus, Denmark
[5] Univ Illinois, Sch Integrat Biol, Dept Anim Biol, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biochemical adaptation; hemoglobin; high altitude; hypoxia; mutation bias; GLOBIN GENE FAMILIES; FUNCTIONAL DIVERSIFICATION; ALLOSTERIC REGULATION; EVOLUTION; DUPLICATION; NUCLEOTIDE; INSIGHTS; MODEL; DIFFERENTIATION; OXYGENATION;
D O I
10.1073/pnas.1507300112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key question in evolutionary genetics is why certain mutations or certain types of mutation make disproportionate contributions to adaptive phenotypic evolution. In principle, the preferential fixation of particular mutations could stem directly from variation in the underlying rate of mutation to function-altering alleles. However, the influence of mutation bias on the genetic architecture of phenotypic evolution is difficult to evaluate because data on rates of mutation to function-altering alleles are seldom available. Here, we report the discovery that a single point mutation at a highly mutable site in the beta(A)-globin gene has contributed to an evolutionary change in hemoglobin (Hb) function in high-altitude Andean house wrens (Troglodytes aedon). Results of experiments on native Hb variants and engineered, recombinant Hb mutants demonstrate that a nonsynonymous mutation at a CpG dinucleotide in the beta(A)-globin gene is responsible for an evolved difference in Hb-O-2 affinity between high-and low-altitude house wren populations. Moreover, patterns of genomic differentiation between high-and low-altitude populations suggest that altitudinal differentiation in allele frequencies at the causal amino acid polymorphism reflects a history of spatially varying selection. The experimental results highlight the influence of mutation rate on the genetic basis of phenotypic evolution by demonstrating that a large-effect allele at a highly mutable CpG site has promoted physiological differentiation in blood O-2 transport capacity between house wren populations that are native to different elevations.
引用
收藏
页码:13958 / 13963
页数:6
相关论文
共 50 条
  • [21] Genomic insights into adaptation to high-altitude environments
    Cheviron, Z. A.
    Brumfield, R. T.
    HEREDITY, 2012, 108 (04) : 354 - 361
  • [22] Genomic insights into adaptation to high-altitude environments
    Z A Cheviron
    R T Brumfield
    Heredity, 2012, 108 : 354 - 361
  • [23] Selection signatures for high-altitude adaptation in ruminants
    Friedrich, J.
    Wiener, P.
    ANIMAL GENETICS, 2020, 51 (02) : 157 - 165
  • [24] Mechanisms of hemoglobin adaptation to high altitude hypoxia
    Storz, Jay F.
    Moriyama, Hideaki
    HIGH ALTITUDE MEDICINE & BIOLOGY, 2008, 9 (02) : 148 - 157
  • [25] Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life
    Di Genova, Alex
    Nardocci, Gino
    Maldonado-Agurto, Rodrigo
    Hodar, Christian
    Valdivieso, Camilo
    Morales, Pamela
    Gajardo, Felipe
    Marina, Raquel
    Gutierrez, Rodrigo A.
    Orellana, Ariel
    Cambiazo, Veronica
    Gonzalez, Mauricio
    Glavic, Alvaro
    Mendez, Marco A.
    Maass, Alejandro
    Allende, Miguel L.
    Montecino, Martin A.
    GENOMICS, 2022, 114 (01) : 305 - 315
  • [26] Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis
    Yang, Weizhao
    Qi, Yin
    Fu, Jinzhong
    BMC GENETICS, 2016, 17
  • [27] DISCOURSE ANALYSIS AND PSYCHOLOGICAL ADAPTATION TO HIGH-ALTITUDE HYPOXIA
    NOELJORAND, MC
    REINERT, M
    BONNON, M
    THERME, P
    STRESS MEDICINE, 1995, 11 (01): : 27 - 39
  • [28] Increase in Carbohydrate Utilization in High-Altitude Andean Mice
    Schippers, Marie-Pierre
    Ramirez, Oswaldo
    Arana, Margarita
    Pinedo-Bernal, Percy
    McClelland, Grant B.
    CURRENT BIOLOGY, 2012, 22 (24) : 2350 - 2354
  • [29] High-altitude adaptation: Role of genetic and epigenetic factors
    Basak, Nipa
    Thangaraj, Kumarasamy
    JOURNAL OF BIOSCIENCES, 2021, 46 (04)
  • [30] Andean and Tibetan patterns of adaptation to high altitude
    Bigham, Abigail W.
    Wilson, Megan J.
    Julian, Colleen G.
    Kiyamu, Melisa
    Vargas, Enrique
    Leon-Velarde, Fabiola
    Rivera-Chira, Maria
    Rodriquez, Carmelo
    Browne, Vaughn A.
    Parra, Esteban
    Brutsaert, Tom D.
    Moore, Lorna G.
    Shriver, Mark D.
    AMERICAN JOURNAL OF HUMAN BIOLOGY, 2013, 25 (02) : 190 - 197